1,200 research outputs found

    On the Application of Mechanical Vibration in Robotics-Assisted Soft Tissue Intervention

    Get PDF
    Mechanical vibration as a way of transmitting energy has been an interesting subject to study. While cyclic oscillation is usually associated with fatigue effect, and hence a detrimental factor in failure of structures and machineries, by controlled transmission of vibration, energy can be transferred from the source to the target. In this thesis, the application of such mechanical vibration in a few surgical procedures is demonstrated. Three challenges associated with lung cancer diagnosis and treatment are chosen for this purpose, namely, Motion Compensation, tumor targeting in lung Needle Insertion and Soft Tissue Dissection: A robotic solution is proposed for compensating for the undesirable oscillatory motion of soft tissue (caused by heart beat and respiration) during needle insertion in the lung. An impedance control strategy based on a mechanical vibratory system is implemented to minimize the tissue deformation during needle insertion. A prototype was built to evaluate the proposed approach using: 1) two Mitsubishi PA10-7C robots, one for manipulating the macro part and the other for mimicking the tissue motion, 2) one motorized linear stage to handle the micro part, and 3) a Phantom Omni haptic device for remote manipulation. Experimental results are given to demonstrate the performance of the motion compensation system. A vibration-assisted needle insertion technique has been proposed in order to reduce needle–tissue friction. The LuGre friction model is employed as a basis for the study and the model is extended and analyzed to include the impact of high-frequency vibration on translational friction. Experiments are conducted to evaluate the role of insertion speed as well as vibration frequency on frictional effects. In the experiments conducted, an 18 GA brachytherapy needle was vibrated and inserted into an ex-vivo soft tissue sample using a pair of amplified piezoelectric actuators. Analysis demonstrates that the translational friction can be reduced by introducing a vibratory low-amplitude motion onto a regular insertion profile, which is usually performed at a constant rate. A robotics-assisted articulating ultrasonic surgical scalpel for minimally invasive soft tissue cutting and coagulation is designed and developed. For this purpose, the optimal design of a Langevin transducer with stepped horn profile is presented for internal-body applications. The modeling, optimization and design of the ultrasonic scalpel are performed through equivalent circuit theory and verified by finite element analysis. Moreover, a novel surgical wrist, compatible with the da Vinci® surgical system, with decoupled two degrees-of-freedom (DOFs) is developed that eliminates the strain of pulling cables and electrical wires. The developed instrument is then driven using the dVRK (da Vinci® research kit) and the Classic da Vinci® surgical system

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Focal Spot, Summer/Fall 2009

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1112/thumbnail.jp

    Application of micro/nanorobot in medicine

    Get PDF
    The development of micro/nanorobots and their application in medical treatment holds the promise of revolutionizing disease diagnosis and treatment. In comparison to conventional diagnostic and treatment methods, micro/nanorobots exhibit immense potential due to their small size and the ability to penetrate deep tissues. However, the transition of this technology from the laboratory to clinical applications presents significant challenges. This paper provides a comprehensive review of the research progress in micro/nanorobotics, encompassing biosensors, diagnostics, targeted drug delivery, and minimally invasive surgery. It also addresses the key issues and challenges facing this technology. The fusion of micro/nanorobots with medical treatments is poised to have a profound impact on the future of medicine

    Perception and Orientation in Minimally Invasive Surgery

    No full text
    During the last two decades, we have seen a revolution in the way that we perform abdominal surgery with increased reliance on minimally invasive techniques. This paradigm shift has come at a rapid pace, with laparoscopic surgery now representing the gold standard for many surgical procedures and further minimisation of invasiveness being seen with the recent clinical introduction of novel techniques such as single-incision laparoscopic surgery and natural orifice translumenal endoscopic surgery. Despite the obvious benefits conferred on the patient in terms of morbidity, length of hospital stay and post-operative pain, this paradigm shift comes at a significantly higher demand on the surgeon, in terms of both perception and manual dexterity. The issues involved include degradation of sensory input to the operator compared to conventional open surgery owing to a loss of three-dimensional vision through the use of the two-dimensional operative interface, and decreased haptic feedback from the instruments. These changes have led to a much higher cognitive load on the surgeon and a greater risk of operator disorientation leading to potential surgical errors. This thesis represents a detailed investigation of disorientation in minimally invasive surgery. In this thesis, eye tracking methodology is identified as the method of choice for evaluating behavioural patterns during orientation. An analysis framework is proposed to profile orientation behaviour using eye tracking data validated in a laboratory model. This framework is used to characterise and quantify successful orientation strategies at critical stages of laparoscopic cholecystectomy and furthermore use these strategies to prove that focused teaching of this behaviour in novices can significantly increase performance in this task. Orientation strategies are then characterised for common clinical scenarios in natural orifice translumenal endoscopic surgery and the concept of image saliency is introduced to further investigate the importance of specific visual cues associated with effective orientation. Profiling of behavioural patterns is related to performance in orientation and implications on education and construction of smart surgical robots are drawn. Finally, a method for potentially decreasing operator disorientation is investigated in the form of endoscopic horizon stabilization in a simulated operative model for transgastric surgery. The major original contributions of this thesis include: Validation of a profiling methodology/framework to characterise orientation behaviour Identification of high performance orientation strategies in specific clinical scenarios including laparoscopic cholecystectomy and natural orifice translumenal endoscopic surgery Evaluation of the efficacy of teaching orientation strategies Evaluation of automatic endoscopic horizon stabilization in natural orifice translumenal endoscopic surgery The impact of the results presented in this thesis, as well as the potential for further high impact research is discussed in the context of both eye tracking as an evaluation tool in minimally invasive surgery as well as implementation of means to combat operator disorientation in a surgical platform. The work also provides further insight into the practical implementation of computer-assistance and technological innovation in future flexible access surgical platforms

    Endovascular treatment of renal bleeding: Technical success, clinical tolerability and overall success

    Get PDF

    A flexible access platform for robot-assisted minimally invasive surgery

    No full text
    Advances in Minimally Invasive Surgery (MIS) are driven by the clinical demand to reduce the invasiveness of surgical procedures so patients undergo less trauma and experience faster recoveries. These well documented benefits of MIS have been achieved through parallel advances in the technology and instrumentation used during procedures. The new and evolving field of Flexible Access Surgery (FAS), where surgeons access the operative site through a single incision or a natural orifice incision, is being promoted as the next potential step in the evolution of surgery. In order to achieve similar levels of success and adoption as MIS, technology again has its role to play in developing new instruments to solve the unmet clinical challenges of FAS. As procedures become less invasive, these instruments should not just address the challenges presented by the complex access routes of FAS, but should also build on the recent advances in pre- and intraoperative imaging techniques to provide surgeons with new diagnostic and interventional decision making capabilities. The main focus of this thesis is the development and applications of a flexible robotic device that is capable of providing controlled flexibility along curved pathways inside the body. The principal component of the device is its modular mechatronic joint design which utilises an embedded micromotor-tendon actuation scheme to provide independently addressable degrees of freedom and three internal working channels. Connecting multiple modules together allows a seven degree-of-freedom (DoF) flexible access platform to be constructed. The platform is intended for use as a research test-bed to explore engineering and surgical challenges of FAS. Navigation of the platform is realised using a handheld controller optimised for functionality and ergonomics, or in a "hands-free" manner via a gaze contingent control framework. Under this framework, the operator's gaze fixation point is used as feedback to close the servo control loop. The feasibility and potential of integrating multi-spectral imaging capabilities into flexible robotic devices is also demonstrated. A force adaptive servoing mechanism is developed to simplify the deployment, and improve the consistency of probe-based optical imaging techniques by automatically controlling the contact force between the probe tip and target tissue. The thesis concludes with the description of two FAS case studies performed with the platform during in-vivo porcine experiments. These studies demonstrate the ability of the platform to perform large area explorations within the peritoneal cavity and to provide a stable base for the deployment of interventional instruments and imaging probes

    How sonoporation disrupts cellular structural integrity: morphological and cytoskeletal observations

    Get PDF
    Posters: no. 1Control ID: 1672429OBJECTIVES: In considering sonoporation for drug delivery applications, it is essential to understand how living cells respond to this puncturing force. Here we seek to investigate the effects of sonoporation on cellular structural integrity. We hypothesize that the membrane morphology and cytoskeletal behavior of sonoporated cells under recovery would inherently differ from that of normal viable cells. METHODS: A customized and calibrated exposure platform was developed for this work, and the ZR-75-30 breast carcinoma cells were used as the cell model. The cells were exposed to either single or multiple pulses of 1 MHz ultrasound (pulse length: 30 or 100 cycles; PRF: 1kHz; duration: up to 60s) with 0.45 MPa spatial-averaged peak negative pressure and in the presence of lipid-shelled microbubbles. Confocal microscopy was used to examine insitu the structural integrity of sonoporated cells (identified as ones with exogenous fluorescent marker internalization). For investigations on membrane morphology, FM 4-64 was used as the membrane dye (red), and calcein was used as the sonoporation marker (green); for studies on cytoskeletal behavior, CellLight (green) and propidium iodide (red) were used to respectively label actin filaments and sonoporated cells. Observation started from before exposure to up to 2 h after exposure, and confocal images were acquired at real-time frame rates. Cellular structural features and their temporal kinetics were quantitatively analyzed to assess the consistency of trends amongst a group of cells. RESULTS: Sonoporated cells exhibited membrane shrinkage (decreased by 61% in a cell’s cross-sectional area) and intracellular lipid accumulation (381% increase compared to control) over a 2 h period. The morphological repression of sonoporated cells was also found to correspond with post-sonoporation cytoskeletal processes: actin depolymerization was observed as soon as pores were induced on the membrane. These results show that cellular structural integrity is indeed disrupted over the course of sonoporation. CONCLUSIONS: Our investigation shows that the biophysical impact of sonoporation is by no means limited to the induction of membrane pores: e.g. structural integrity is concomitantly affected in the process. This prompts the need for further fundamental studies to unravel the complex sequence of biological events involved in sonoporation.postprin

    A study on the change in plasma membrane potential during sonoporation

    Get PDF
    Posters: no. 4Control ID: 1680329OBJECTIVES: There has been validated that the correlation of sonoporation with calcium transients is generated by ultrasound-mediated microbubbles activity. Besides calcium, other ionic flows are likely involved in sonoporation. Our hypothesis is the cell electrophysiological properties are related to the intracellular delivery by ultrasound and microbubbles. In this study, a real-time live cell imaging platform is used to determine whether plasma membrane potential change is related to the sonoporation process at the cellular level. METHODS: Hela cells were cultured in DMEM supplemented with 10% FBS in Opticell Chamber at 37 °C and 5% CO2, and reached 80% confluency before experiments. The Calcein Blue-AM, DiBAC4(3) loaded cells in the Opticell chamber filled with PI solution and Sonovue microbubbles were immerged in a water tank on a inverted fluorescence microscope. Pulsed ultrasound (1MHz freq., 20 cycles, 20Hz PRF, 0.2-0.5MPa PNP) was irradiated at the angle of 45° to the region of interest for 1s.The real-time fluorescence imaging for different probes was acquired by a cooled CCD camera every 20s for 10min. The time-lapse fluorescence images were quantitatively analyzed to evaluate the correlation of cell viability, intracellular delivery with plasma membrane potential change. RESULTS: Our preliminary data showed that the PI fluorescence, which indicated intracellular delivery, was immediately accumulated in cells adjacent to microbubbles after exposure, suggesting that their membranes were damaged by ultrasound-activated microbubbles. However, the fluorescence reached its highest level within 4 to 6 minutes and was unchanged thereafter, indicating the membrane was gradually repaired within this period. Furthermore, using DIBAC4(3), which detected the change in the cell membrane potential, we found that the loss of membrane potential might be associated with intracellular delivery, because the PI fluorescence accumulation was usually accompanied with the change in DIBAC4 (3) fluorescence. CONCLUSIONS: Our study suggests that there may be a linkage between the cell membrane potential change and intracellular delivery mediated by ultrasound and microbubbles. We also suggest that other ionic flows or ion channels may be involved in the cell membrane potential change in sonoporation. Further efforts to explore the cellular mechanism of this phenomenon will improve our understanding of sonoporation.postprin
    • …
    corecore