274 research outputs found

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Narratives of ocular experience in interactive 360° environments

    Get PDF
    The purpose of this research project was to examine how immersive digital virtual technologies have the potential to expand the genre of interactive film into new forms of audience engagement and narrative production. Aside from addressing the limitations of interactive film, I have explored how interactive digital narratives can be reconfigured in the wake of immersive media. My contribution to knowledge stems from using a transdisciplinary synthesis of the interactive systems in film and digital media art, which is embodied in the research framework and theoretical focal point that I have titled Cynematics (chapter 2). Using a methodology that promotes iterative experimentation I developed a series of works that allowed me to practically explore the limitations of interactive film systems that involve non-haptic user interaction. This is evidenced in the following series of works: Virtual Embodiment, Narrative Maze, Eye Artefact Interactions and Routine Error - all of which are discussed in chapter 4 of this thesis. Each of these lab experiments collectively build towards the development of novel interactive 360° film practices. Funneling my research towards these underexplored processes I focused on virtual gaze interaction (chapters 4-6), aiming to define and historically contextualise this system of interaction, whilst critically engaging with it through my practice. It is here that gaze interaction is cemented as the key focus of this thesis. The potential of interactive 360° film is explored through the creation of three core pieces of practice, which are titled as follows: Systems of Seeing (chapter 5), Mimesis (chapter 6), Vanishing Point (chapter 7). Alongside the close readings in these chapters and the theoretical developments explored in each are the interaction designs included in the appendix of the thesis. These provide useful context for readers unable to experience these site-specific installations as virtual reality applications. After creating these systems, I established terms to theoretically unpack some of the processes occurring within them. These include Datascape Mediation (chapter 2), which frames agency as a complex entanglement built on the constantly evolving relationships between human and machine - and Live-Editing Practice (chapter 7), which aims to elucidate how the interactive 360° film practice designed for this research leads to new way of thinking about how we design, shoot and interact with 360° film. Reflecting on feedback from exhibiting Mimesis I decided to define and evaluate the key modes of virtual gaze interaction, which led to the development of a chapter and concept referred to as The Reticle Effect (chapter 6). This refers to how a visual overlay that is used to represent a user's line of sight not only shapes their experience of the work, but also dictates their perception of genre. To navigate this, I combined qualitative and quantitative analysis to explore user responses to four different types of gaze interaction. In preparing to collect this data I had to articulate these different types of interaction, which served to demarcate the difference between each of these types of gaze interaction. Stemming from this I used questionnaires, thematic analysis and data visualisation to explore the use and response to these systems. The results of this not only supports the idea of the reticle effect, but also gives insight into how these different types of virtual gaze interaction shape whether these works are viewed as games or as types of interactive film. The output of this allowed me to further expand on interactive 360° film as a genre of immersive media and move beyond the realm of interactive film into new technological discourses, which serves to validate the nascent, yet expansive reach of interactive 360° film as a form of practice. The thesis is concluded by framing this research within the wider discourse of posthuman theory as given that the technologies of immersive media perpetuate a state of extended human experience - how we interact and consider the theories that surround these mediums needs to be considered in the same way. The practice and theory developed throughout this thesis contribute to this discourse and allow for new ways of considering filmic language in the wake of interactive 360° film practice

    Real-Time Algorithms for High Dynamic Range Video

    Full text link
    A recurring problem in capturing video is the scene having a range of brightness values that exceeds the capabilities of the capturing device. An example would be a video camera in a bright outside area, directed at the entrance of a building. Because of the potentially big brightness difference, it may not be possible to capture details of the inside of the building and the outside simultaneously using just one shutter speed setting. This results in under- and overexposed pixels in the video footage. The approach we follow in this thesis to overcome this problem is temporal exposure bracketing, i.e., using a set of images captured in quick sequence at different shutter settings. Each image then captures one facet of the scene's brightness range. When fused together, a high dynamic range (HDR) video frame is created that reveals details in dark and bright regions simultaneously. The process of creating a frame in an HDR video can be thought of as a pipeline where the output of each step is the input to the subsequent one. It begins by capturing a set of regular images using varying shutter speeds. Next, the images are aligned with respect to each other to compensate for camera and scene motion during capture. The aligned images are then merged together to create a single HDR frame containing accurate brightness values of the entire scene. As a last step, the HDR frame is tone mapped in order to be displayable on a regular screen with a lower dynamic range. This thesis covers algorithms for these steps that allow the creation of HDR video in real-time. When creating videos instead of still images, the focus lies on high capturing and processing speed and on assuring temporal consistency between the video frames. In order to achieve this goal, we take advantage of the knowledge gained from the processing of previous frames in the video. This work addresses the following aspects in particular. The image size parameters for the set of base images are chosen such that only as little image data as possible is captured. We make use of the fact that it is not always necessary to capture full size images when only small portions of the scene require HDR. Avoiding redundancy in the image material is an obvious approach to reducing the overall time taken to generate a frame. With the aid of the previous frames, we calculate brightness statistics of the scene. The exposure values are chosen in a way, such that frequently occurring brightness values are well-exposed in at least one of the images in the sequence. The base images from which the HDR frame is created are captured in quick succession. The effects of intermediate camera motion are thus less intense than in the still image case, and a comparably simpler camera motion model can be used. At the same time, however, there is much less time available to estimate motion. For this reason, we use a fast heuristic that makes use of the motion information obtained in previous frames. It is robust to the large brightness difference between the images of an exposure sequence. The range of luminance values of an HDR frame must be tone mapped to the displayable range of the output device. Most available tone mapping operators are designed for still images and scale the dynamic range of each frame independently. In situations where the scene's brightness statistics change quickly, these operators produce visible image flicker. We have developed an algorithm that detects such situations in an HDR video. Based on this detection, a temporal stability criterion for the tone mapping parameters then prevents image flicker. All methods for capture, creation and display of HDR video introduced in this work have been fully implemented, tested and integrated into a running HDR video system. The algorithms were analyzed for parallelizability and, if applicable, adjusted and implemented on a high-performance graphics chip

    3D high resolution techniques applied on small and medium size objects: from the analysis of the process towards quality assessment

    Get PDF
    The need for metric data acquisition is an issue strictly related to the human capability of describing the world with rigorous and repeatable methods. From the invention of photography to the development of advanced computers, the metric data acquisition has been subjected to rapid mutation, and nowadays there exists a strict connection between metric data acquisition and image processing, Computer Vision and Artificial Intelligence. The sensor devices for the 3D model generation are various and characterized by different functioning principles. In this work, optical passive and active sensors are treated, focusing specifically on close-range photogrammetry, Time of Flight (ToF) sensors and Structured-light scanners (SLS). Starting from the functioning principles of the techniques and showing some issues related to them, the work highlights their potentialities, analyzing the fundamental and most critical steps of the process leading to the quality assessment of the data. Central themes are the instruments calibration, the acquisition plan and the interpretation of the final results. The capability of the acquisition techniques to satisfy unconventional requirements in the field of Cultural Heritage is also shown. The thesis starts with an overview about the history and developments of 3D metric data acquisition. Chapter 1 treats the Human Vision System and presents a complete overview of 3D sensing devices. Chapter 2 starts from the enunciation of the basic principle of close-range photogrammetry considering digital cameras functioning principles, calibration issues, and the process leading to the 3D mesh reconstruction. The case of multi-image acquisition is analyzed, deepening the quality assessment of the photogrammetric process through a case study. Chapter 3 is devoted to the range-based acquisition techniques, namely ToF laser scanners and SLSs. Lastly, Chapter 4 focuses on unconventional applications of the mentioned high-resolution acquisition techniques showing some examples of study cases in the field of Cultural Heritage

    Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 244)

    Get PDF
    This bibliography lists 465 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Eye-tracking the moving medical image: Development and investigation of a novel investigational tool for CT Colonography

    Get PDF
    Colorectal cancer remains the third most common cancer in the UK but the second leading cause of cancer death with >16,000 dying per year. Many advances have been made in recent years in all areas of investigation for colorectal cancer, one of the more notable being the widespread introduction of CT Colonography (CTC). CTC has rapidly established itself as a cornerstone of diagnosis for colonic neoplasia and much work has been done to standardise and assure quality in practice in both the acquisition and interpretation of the technique. A novel feature of CTC is the presentation of imaging in both traditional 2D and the ‘virtual’ 3D endoluminal formats. This thesis looks at expanding our understanding of and improving our performance in utilizing the endoluminal 3D view. We present and develop novel metrics applicable to eye-tracking the moving image, so that the complex dynamic nature of 3D endoluminal fly-through interpretation can be captured. These metrics are then applied to assess the effect of important elements of image interpretation, namely, reader experience, the effect of the use Computer Aided Detection (CAD) and the influence of the expected prevalence of abnormality. We review our findings with reference to the literature of eye tracking within medical imaging. In the co-registration section we apply our validated computer-assisted registration algorithm to the matching of 3D endoluminal colonic locations between temporally separate datasets, assessing its accuracy as an aid to colonic polyp surveillance with CTC

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution
    • …
    corecore