1,010 research outputs found

    Topology assessment for 3 + 3 terminal offshore DC grid considering DC fault management

    Get PDF
    Peer reviewedPostprin

    Offshore DC Grids as an Interconnection of Radial Systems : Protection and Control aspects

    Get PDF
    Peer reviewedPostprin

    Control of multi-terminal HVDC networks towards wind power integration: A review

    Get PDF
    © 2015 Elsevier Ltd. More interconnections among countries and synchronous areas are foreseen in order to fulfil the EU 2050 target on the renewable generation share. One proposal to accomplish this challenging objective is the development of the so-called European SuperGrid. Multi-terminal HVDC networks are emerging as the most promising technologies to develop such a concept. Moreover, multi-terminal HVDC grids are based on highly controllable devices, which may allow not only transmitting power, but also supporting the AC grids to ensure a secure and stable operation. This paper aims to present an overview of different control schemes for multi-terminal HVDC grids, including the control of the power converters and the controls for power sharing and the provision of ancillary services. This paper also analyses the proposed modifications of the existing control schemes to manage high participation shares of wind power generation in multi-terminal grids.Postprint (author's final draft

    Optimal Control Design for Multiterminal HVDC

    Get PDF
    This thesis proposes an optimal-control based design for distributed frequency control in multi-terminal high voltage direct current (MTDC) systems. The current power grid has become overstressed by rapid growth in the demand for electric power and penetration of renewable energy. To address these challenges, MTDC technology has been developed, which has the potential to increase the flexibility and reliability of power transmission in the grid. Several control strategies have been proposed to regulate the MTDC system and its interaction with connected AC systems. However, all the existing control strategies are based on proportional and integral (PI) control with predetermined controller structures. The objective of the thesis is to first determine if existing control structures are optimal, and if improved controller structures can be developed.The thesis proposes a general framework to determine the optimal structure for the control system in MTDC transmission through optimal feedback control. The proposed method is validated and demonstrated using an example of frequency control in a MTDC system connecting five AC areas

    A review on DC collection grids for offshore wind farms with HVDC transmission system

    Get PDF
    Abstract: Traditionally, the internal network composition of offshore wind farms consists of alternating current (AC) collection grid; all outputs of wind energy conversion units (WECUs) on a wind farm are aggregated to an AC bus. Each WECU includes: a wind-turbine plus mechanical parts, a generator including electronic controller, and a huge 50-or 60-Hz power transformer. For a DC collection grid, all outputs of WECUs are aggregated to a DC bus; consequently, the transformer in each WECU is replaced by a power converter or rectifier. The converter is more compact and smaller in size compared to the transformer. Thus reducing the size and weight of the WECUs, and also simplifying the wind farm structure. Actually, the use of offshore AC collection grids instead of offshore DC collection grids is mainly motivated by the availability of control and protection devices. However, efficient solutions to control and protect DC grids including HVDC transmission systems have already been addressed. Presently, there are no operational wind farms with DC collection grids, only theoretical and small-scale prototypes are being investigated worldwide. Therefore, a suitable configuration of the DC collection grid, which has been practically verified, is not available yet. This paper discussed some of the main components required for a DC collection grid including: the wind-turbine-generator models, the control and protection methods, the offshore platform structure, and the DC-grid feeder configurations. The key component of a DC collection grid is the power converter; therefore, the paper also reviews some topologies of power converter suitable for DC grid applications

    Study on VSC HVDC Modeling and Control Strategies for Wind Power Integration

    Get PDF

    Optioneering analysis for connecting Dogger Bank offshore wind farms to the GB electricity network

    Get PDF
    This paper outlines possibilities for connecting 2.4 GW of power from two separate wind farms at Dogger Bank in the North Sea to the GB transmission system in Great Britain. Three options based on HVDC with Voltage Source Converters (VSC HVDC) are investigated: two separate point-to-point connections, a four-terminal multi-terminal network and a four-terminal network with the addition of an AC auxiliary cable between the two wind farms. Each option is investigated in terms of investment cost, controllability and reliability against expected fault scenarios. The paper concludes that a VSC-HVDC point-to-point connection is the cheapest option in terms of capital cost and has the additional advantage that it uses technology that is commercially available. However, while multi-terminal connections are more expensive to build it is found that they can offer significant advantages over point to point systems in terms of security of supply and so could offer better value for money overall. A multi-terminal option with an auxiliary AC connection between wind farms is found to be lower cost than a full multi-terminal DC grid option although the latter network would offer ability to operate at greater connection distances between substations

    Analysis and Control of Offshore Wind Power Collection Systems

    Get PDF
    The utilization of offshore wind energy in power systems generally includes power generation, power collection and power transmission. An efficient wind energy conversion system is proposed for offshore wind power generation. Three types of DC collection systems are discussed for both normal and fault operations. To integrate the power from several offshore wind farms with a grid, the multi-terminal HVDC system is applied. All the proposals are verified through extensive simulation studies
    • …
    corecore