306 research outputs found

    FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture

    Full text link
    Neural Network (NN) accelerators with emerging ReRAM (resistive random access memory) technologies have been investigated as one of the promising solutions to address the \textit{memory wall} challenge, due to the unique capability of \textit{processing-in-memory} within ReRAM-crossbar-based processing elements (PEs). However, the high efficiency and high density advantages of ReRAM have not been fully utilized due to the huge communication demands among PEs and the overhead of peripheral circuits. In this paper, we propose a full system stack solution, composed of a reconfigurable architecture design, Field Programmable Synapse Array (FPSA) and its software system including neural synthesizer, temporal-to-spatial mapper, and placement & routing. We highly leverage the software system to make the hardware design compact and efficient. To satisfy the high-performance communication demand, we optimize it with a reconfigurable routing architecture and the placement & routing tool. To improve the computational density, we greatly simplify the PE circuit with the spiking schema and then adopt neural synthesizer to enable the high density computation-resources to support different kinds of NN operations. In addition, we provide spiking memory blocks (SMBs) and configurable logic blocks (CLBs) in hardware and leverage the temporal-to-spatial mapper to utilize them to balance the storage and computation requirements of NN. Owing to the end-to-end software system, we can efficiently deploy existing deep neural networks to FPSA. Evaluations show that, compared to one of state-of-the-art ReRAM-based NN accelerators, PRIME, the computational density of FPSA improves by 31x; for representative NNs, its inference performance can achieve up to 1000x speedup.Comment: Accepted by ASPLOS 201

    The Potential of the Intel Xeon Phi for Supervised Deep Learning

    Full text link
    Supervised learning of Convolutional Neural Networks (CNNs), also known as supervised Deep Learning, is a computationally demanding process. To find the most suitable parameters of a network for a given application, numerous training sessions are required. Therefore, reducing the training time per session is essential to fully utilize CNNs in practice. While numerous research groups have addressed the training of CNNs using GPUs, so far not much attention has been paid to the Intel Xeon Phi coprocessor. In this paper we investigate empirically and theoretically the potential of the Intel Xeon Phi for supervised learning of CNNs. We design and implement a parallelization scheme named CHAOS that exploits both the thread- and SIMD-parallelism of the coprocessor. Our approach is evaluated on the Intel Xeon Phi 7120P using the MNIST dataset of handwritten digits for various thread counts and CNN architectures. Results show a 103.5x speed up when training our large network for 15 epochs using 244 threads, compared to one thread on the coprocessor. Moreover, we develop a performance model and use it to assess our implementation and answer what-if questions.Comment: The 17th IEEE International Conference on High Performance Computing and Communications (HPCC 2015), Aug. 24 - 26, 2015, New York, US
    corecore