40,819 research outputs found

    Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA

    Full text link
    [EN] Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of aggressive competition among companies, effective management of supply chain risks (SCRs) is crucial, and is currently a very active field of research. Failure Mode, Effects and Criticality Analysis (FMECA) has been recently extended to SCR identification and prioritization, aiming at reducing potential losses caused by lack of risk control. This article has a twofold objective. First, SCR assessment is investigated, and a comprehensive list of specific risks related to the automotive industry is compiled to extend the set of most commonly considered risks. Second, an alternative way of calculating the Risk Priority Number (RPN) is proposed within the FMECA framework by means of an integrated Multi-Criteria Decision-Making (MCDM) approach. We give a new calculation procedure by making use of the Analytic Hierarchy Process (AHP) to derive factors weights, and then the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the new factor of "dependence" among the risks. The developed joint analysis constitutes a risk analysis support tool for criticality in systems engineering. The approach also deals with uncertainty and vagueness associated with input data through the use of fuzzy numbers. The results obtained from a relevant case study in the automotive industry showcase the effectiveness of this approach, which brings important value to those companies: When planning interventions of prevention/mitigation, primary importance should be given to (1) supply chain disruptions due to natural disasters; (2) manufacturing facilities, human resources, policies and breakdown processes; and (3) inefficient transport.Mzougui, I.; Carpitella, S.; Certa, A.; El Felsoufi, Z.; Izquierdo SebastiĂĄn, J. (2020). Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA. Processes. 8(5):1-22. https://doi.org/10.3390/pr8050579S12285Tian, Q., & Guo, W. (2019). Reconfiguration of manufacturing supply chains considering outsourcing decisions and supply chain risks. Journal of Manufacturing Systems, 52, 217-226. doi:10.1016/j.jmsy.2019.04.005Wu, Y., Jia, W., Li, L., Song, Z., Xu, C., & Liu, F. (2019). Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation. Energy, 182, 397-411. doi:10.1016/j.energy.2019.06.007Garvey, M. D., & Carnovale, S. (2020). The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation. International Journal of Production Economics, 228, 107752. doi:10.1016/j.ijpe.2020.107752Kern, D., Moser, R., Hartmann, E., & Moder, M. (2012). Supply risk management: model development and empirical analysis. International Journal of Physical Distribution & Logistics Management, 42(1), 60-82. doi:10.1108/09600031211202472Wang, H., Gu, T., Jin, M., Zhao, R., & Wang, G. (2018). The complexity measurement and evolution analysis of supply chain network under disruption risks. Chaos, Solitons & Fractals, 116, 72-78. doi:10.1016/j.chaos.2018.09.018Ghoshal, S. (1987). Global strategy: An organizing framework. Strategic Management Journal, 8(5), 425-440. doi:10.1002/smj.4250080503Schoenherr, T., Rao Tummala, V. M., & Harrison, T. P. (2008). Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company. Journal of Purchasing and Supply Management, 14(2), 100-111. doi:10.1016/j.pursup.2008.01.008Xu, M., Cui, Y., Hu, M., Xu, X., Zhang, Z., Liang, S., & Qu, S. (2019). Supply chain sustainability risk and assessment. Journal of Cleaner Production, 225, 857-867. doi:10.1016/j.jclepro.2019.03.307Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12-27. doi:10.1016/j.ijpe.2008.07.008Ghadge, A., Dani, S., & Kalawsky, R. (2012). Supply chain risk management: present and future scope. The International Journal of Logistics Management, 23(3), 313-339. doi:10.1108/09574091211289200Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classification and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5-6), 275-285. doi:10.1002/mcda.1620Ć»ak, J., & KruszyƄski, M. (2015). Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, 820-830. doi:10.1016/j.trpro.2015.09.035Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390-404. doi:10.1016/j.jbi.2014.11.012Chang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758Nazeri, A., & Naderikia, R. (2017). A new fuzzy approach to identify the critical risk factors in maintenance management. The International Journal of Advanced Manufacturing Technology, 92(9-12), 3749-3783. doi:10.1007/s00170-017-0222-4Liu, H.-C., You, J.-X., Lin, Q.-L., & Li, H. (2014). Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory. International Journal of Computer Integrated Manufacturing, 28(7), 701-714. doi:10.1080/0951192x.2014.900865Muhammad, M. N., & Cavus, N. (2017). Fuzzy DEMATEL method for identifying LMS evaluation criteria. Procedia Computer Science, 120, 742-749. doi:10.1016/j.procs.2017.11.304Chang, K.-H., & Cheng, C.-H. (2009). Evaluating the risk of failure using the fuzzy OWA and DEMATEL method. Journal of Intelligent Manufacturing, 22(2), 113-129. doi:10.1007/s10845-009-0266-xMarch, J. G., & Shapira, Z. (1987). Managerial Perspectives on Risk and Risk Taking. Management Science, 33(11), 1404-1418. doi:10.1287/mnsc.33.11.1404Blos, M. F., Quaddus, M., Wee, H. M., & Watanabe, K. (2009). Supply chain risk management (SCRM): a case study on the automotive and electronic industries in Brazil. Supply Chain Management: An International Journal, 14(4), 247-252. doi:10.1108/13598540910970072Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V.-M., & Tuominen, M. (2004). Risk management processes in supplier networks. International Journal of Production Economics, 90(1), 47-58. doi:10.1016/j.ijpe.2004.02.007JĂŒttner, U. (2005). Supply chain risk management. The International Journal of Logistics Management, 16(1), 120-141. doi:10.1108/09574090510617385Gary Teng, S., Ho, S. M., Shumar, D., & Liu, P. C. (2006). Implementing FMEA in a collaborative supply chain environment. International Journal of Quality & Reliability Management, 23(2), 179-196. doi:10.1108/02656710610640943JĂŒttner, U., Peck, H., & Christopher, M. (2003). Supply chain risk management: outlining an agenda for future research. International Journal of Logistics Research and Applications, 6(4), 197-210. doi:10.1080/13675560310001627016Sodhi, M. S., Son, B.-G., & Tang, C. S. (2011). Researchers’ Perspectives on Supply Chain Risk Management. Production and Operations Management, 21(1), 1-13. doi:10.1111/j.1937-5956.2011.01251.xWagner, S. M., & Bode, C. (2006). An empirical investigation into supply chain vulnerability. Journal of Purchasing and Supply Management, 12(6), 301-312. doi:10.1016/j.pursup.2007.01.004Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management strategies. International Journal of Physical Distribution & Logistics Management, 38(3), 192-223. doi:10.1108/09600030810866986Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2019). Fuzzy cognitive maps approach for analysing the domino effect of factors affecting supply chain resilience: a fashion industry case study. International Journal of Production Research, 58(20), 6370-6398. doi:10.1080/00207543.2019.1680893Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2018). Conceptual model for analysing domino effect among concepts affecting supply chain resilience. Supply Chain Forum: An International Journal, 19(4), 282-299. doi:10.1080/16258312.2018.1537504Hsieh, C. Y., Wee, H. M., & Chen, A. (2016). Resilient logistics to mitigate supply chain uncertainty: A case study of an automotive company. Scientia Iranica, 23(5), 2287-2296. doi:10.24200/sci.2016.3957Lotfi, M., & Saghiri, S. (2018). Disentangling resilience, agility and leanness. Journal of Manufacturing Technology Management, 29(1), 168-197. doi:10.1108/jmtm-01-2017-0014Marasova, D., Andrejiova, M., & Grincova, A. (2017). Applying the Heuristic to the Risk Assessment within the Automotive Industry Supply Chain. Open Engineering, 7(1), 43-49. doi:10.1515/eng-2017-0007Pandey, A. K., & Sharma, R. K. (2017). FMEA-based interpretive structural modelling approach to model automotive supply chain risk. International Journal of Logistics Systems and Management, 27(4), 395. doi:10.1504/ijlsm.2017.085221Vujović, A., Đorđević, A., Gojković, R., & Borota, M. (2017). ABC Classification of Risk Factors in Production Supply Chains with Uncertain Data. Mathematical Problems in Engineering, 2017, 1-11. doi:10.1155/2017/4931797Aven, T. (2012). The risk concept—historical and recent development trends. Reliability Engineering & System Safety, 99, 33-44. doi:10.1016/j.ress.2011.11.006Chang, D., & Paul Sun, K. (2009). Applying DEA to enhance assessment capability of FMEA. International Journal of Quality & Reliability Management, 26(6), 629-643. doi:10.1108/02656710910966165Chin, K.-S., Wang, Y.-M., Ka Kwai Poon, G., & Yang, J.-B. (2009). Failure mode and effects analysis using a group-based evidential reasoning approach. Computers & Operations Research, 36(6), 1768-1779. doi:10.1016/j.cor.2008.05.002Chang, B., Chang, C.-W., & Wu, C.-H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert Systems with Applications, 38(3), 1850-1858. doi:10.1016/j.eswa.2010.07.114Zhang, Z., & Chu, X. (2011). Risk prioritization in failure mode and effects analysis under uncertainty. Expert Systems with Applications, 38(1), 206-214. doi:10.1016/j.eswa.2010.06.046Zhang, Y. F., Zhou, R. B., Yang, J. M., & Zhang, Z. (2014). Application of FTA-FMEA Method in Fault Diagnosis of Tracked Vehicle. Advanced Materials Research, 940, 112-115. doi:10.4028/www.scientific.net/amr.940.112Liu, H.-C., Liu, L., Bian, Q.-H., Lin, Q.-L., Dong, N., & Xu, P.-C. (2011). Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Systems with Applications, 38(4), 4403-4415. doi:10.1016/j.eswa.2010.09.110Liu, H.-C., Liu, L., Liu, N., & Mao, L.-X. (2012). Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. doi:10.1016/j.eswa.2012.05.031Liu, Y., Fan, Z.-P., Yuan, Y., & Li, H. (2014). A FTA-based method for risk decision-making in emergency response. Computers & Operations Research, 42, 49-57. doi:10.1016/j.cor.2012.08.015Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1), 61-67. doi:10.1016/j.eswa.2011.06.044Chang, C., Liu, P., & Wei, C. (2001). Failure mode and effects analysis using grey theory. Integrated Manufacturing Systems, 12(3), 211-216. doi:10.1108/09576060110391174Bevilacqua, M., Braglia, M., & Gabbrielli, R. (2000). Monte Carlo simulation approach for a modified FMECA in a power plant. Quality and Reliability Engineering International, 16(4), 313-324. doi:10.1002/1099-1638(200007/08)16:43.0.co;2-uLai, G., Debo, L. G., & Sycara, K. (2009). Sharing inventory risk in supply chain: The implication of financial constraint. Omega, 37(4), 811-825. doi:10.1016/j.omega.2008.06.003Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402. doi:10.1016/j.ress.2017.09.017Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., & Salari, N. (2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Applied Soft Computing, 84, 105729. doi:10.1016/j.asoc.2019.10572

    An Exploratory Study of Patient Falls

    Get PDF
    Debate continues between the contribution of education level and clinical expertise in the nursing practice environment. Research suggests a link between Baccalaureate of Science in Nursing (BSN) nurses and positive patient outcomes such as lower mortality, decreased falls, and fewer medication errors. Purpose: To examine if there a negative correlation between patient falls and the level of nurse education at an urban hospital located in Midwest Illinois during the years 2010-2014? Methods: A retrospective crosssectional cohort analysis was conducted using data from the National Database of Nursing Quality Indicators (NDNQI) from the years 2010-2014. Sample: Inpatients aged ≄ 18 years who experienced a unintentional sudden descent, with or without injury that resulted in the patient striking the floor or object and occurred on inpatient nursing units. Results: The regression model was constructed with annual patient falls as the dependent variable and formal education and a log transformed variable for percentage of certified nurses as the independent variables. The model overall is a good fit, F (2,22) = 9.014, p = .001, adj. R2 = .40. Conclusion: Annual patient falls will decrease by increasing the number of nurses with baccalaureate degrees and/or certifications from a professional nursing board-governing body

    Supply chain uncertainty:a review and theoretical foundation for future research

    Get PDF
    Supply-chain uncertainty is an issue with which every practising manager wrestles, deriving from the increasing complexity of global supply networks. Taking a broad view of supply-chain uncertainty (incorporating supply-chain risk), this paper seeks to review the literature in this area and develop a theoretical foundation for future research. The literature review identifies a comprehensive list of 14 sources of uncertainty, including those that have received much research attention, such as the bullwhip effect, and those more recently described, such as parallel interaction. Approaches to managing these sources of uncertainty are classified into: 10 approaches that seek to reduce uncertainty at its source; and, 11 approaches that seek to cope with it, thereby minimising its impact on performance. Manufacturing strategy theory, including the concepts of alignment and contingency, is then used to develop a model of supply-chain uncertainty, which is populated using the literature review to show alignment between uncertainty sources and management strategies. Future research proposed includes more empirical research in order to further investigate: which uncertainties occur in particular industrial contexts; the impact of appropriate sources/management strategy alignment on performance; and the complex interplay between management strategies and multiple sources of uncertainty (positive or negative)

    Effects of trust-based decision making in disrupted supply chains

    Get PDF
    The United States has experienced prolonged severe shortages of vital medications over the past two decades. The causes underlying the severity and prolongation of these shortages are complex, in part due to the complexity of the underlying supply chain networks, which involve supplier-buyer interactions across multiple entities with competitive and cooperative goals. This leads to interesting challenges in maintaining consistent interactions and trust among the entities. Furthermore, disruptions in supply chains influence trust by inducing over-reactive behaviors across the network, thereby impacting the ability to consistently meet the resulting fluctuating demand. To explore these issues, we model a pharmaceutical supply chain with boundedly rational artificial decision makers capable of reasoning about the motivations and behaviors of others. We use multiagent simulations where each agent represents a key decision maker in a pharmaceutical supply chain. The agents possess a Theory-of-Mind capability to reason about the beliefs, and past and future behaviors of other agents, which allows them to assess other agents’ trustworthiness. Further, each agent has beliefs about others’ perceptions of its own trustworthiness that, in turn, impact its behavior. Our experiments reveal several counter-intuitive results showing how small, local disruptions can have cascading global consequences that persist over time. For example, a buyer, to protect itself from disruptions, may dynamically shift to ordering from suppliers with a higher perceived trustworthiness, while the supplier may prefer buyers with more stable ordering behavior. This asymmetry can put the trust-sensitive buyer at a disadvantage during shortages. Further, we demonstrate how the timing and scale of disruptions interact with a buyer’s sensitivity to trustworthiness. This interaction can engender different behaviors and impact the overall supply chain performance, either prolonging and exacerbating even small local disruptions, or mitigating a disruption’s effects. Additionally, we discuss the implications of these results for supply chain operations

    Transportation Risk Management Approach in a food company: A Business Continuity Plan

    Get PDF
    Transportation is an essential aspect to fast-moving consumer goods supply chains. The risks associated with transport operations are of great concern when trying to ensure business continuity of a company. The dissertation is based on the Distribution & Export Business Unit at Kraft Heinz inter-national, which ships to over 25 countries in Eastern Europe, and also to the US and Israel. The complex logistics system that goes into planning transportation for so many countries makes it so that risks within transportation are highly present. The main identified issue at the case study organization was the lack of a structured approach towards transportation risk manage-ment. Most of the contingency measures applied by the company to act on these risks are of a reactive nature instead of proactive. The goal of this research is to create such structured approach towards risk management. To achieve this goal, transportation risks were mapped within the company through semi-structured interviews with employees working in supply chain operations. Additionally, current literature was analyzed and later compared with the interview findings to learn possible strategies and solutions to manage transportation risks. Finally, the gathered knowledge was used to propose a Business Continuity Plan based, which provides insights on how to assess and prepare for current and future transportation risks. The main findings and proposed guidelines for transportation risk management relied on shifting the company's work culture from cost to consumer oriented, increasing communi-cation flows throughout the supply chain with help of cross-functional integration and stand-ardizing the way the case study organization identifies, evaluates, and acts upon transportation risks, as well as actions that can be integrated into supply chain operations, such as assessing risk key performance indicators, determining ownership of tasks and spreading awareness of transportation risks throughout the supply chain.Os transportes sĂŁo um aspeto essencial nas cadeias de abastecimento de bens de consumo rĂĄpido. Os riscos associados Ă s suas operaçÔes sĂŁo de grande preocupação para as empresas que querem garantir continuidade de negĂłcio. O estudo baseia-se na Distribution & Export Business Unit da Kraft Heinz International, que exporta para mais de 25 paĂ­ses na Europa Oriental, e tambĂ©m Estados Unidos e Israel. A complexidade da logĂ­stica envolvida em exportar para tantos paĂ­ses diferentes leva a que a sua cadeia de abastecimento esteja altamente exposta a riscos de transporte. O principal problema identificado na empresa estudo de caso foi de nĂŁo terem uma abordagem estruturada para gerir os riscos no transporte dos produtos. A maioria das medidas realizadas pela empresa, para atenuar esses riscos, tĂȘm sido de natureza reativa em vez de proativa. O objetivo deste estudo Ă© a criação de um plano estruturado para gestĂŁo de riscos, de modo a melhorar a preparação da empresa relativamente a riscos de transporte. Com este objetivo, foram analisados os riscos de transporte da empresa estudo de caso atravĂ©s de entrevistas semiestruturadas com funcionĂĄrios que trabalham nas operaçÔes da cadeia de abastecimento da empresa. Adicionalmente, foi analisada a literatura existente para ser posteriormente comparada com os resultados das entrevistas e concluir possĂ­veis estratĂ©gias e soluçÔes para a gestĂŁo de riscos. Os resultados foram utilizados para propor um Business Continuity Plan , que revela como a empresa se deve preparar para atuais e futuros riscos. As principais conclusĂ”es e diretrizes propostas para a gestĂŁo de risco, referem a necessidade de alterar a cultura da empresa de um foco em custos para um foco no cliente, melhorar as redes de comunicação em toda a cadeia de abastecimento com ajuda de uma equipa multifuncional ou equipa multidepartamental e standardizar a maneira como a empresa identifica, avalia, e age sobre possĂ­veis riscos de transporte, bem como açÔes que podem ser integradas nas operaçÔes da cadeia de abastecimento, como a avaliação atravĂ©s de key performance indicators para riscos, definir responsabilidades e espalhar conhecimento sobre riscos de transportação por toda a cadeia de abastecimentos

    Airline Catering Supply Chain Performance during Pandemic Disruption: A Bayesian Network Modelling Approach

    Get PDF
    The supply chain (SC) encompasses all actions related to meeting customer requests and transferring materials upstream to meet those demands. Organisations must operate towards increasing SC efficiency and effectiveness to meet SC objectives. Although most businesses expected the COVID-19 pandemic to severely negatively impact their SCs, they did not know how to model disruptions or their effects on performance in the event of a pandemic, leading to delayed responses, an incomplete understanding of the pandemic’s effects and late deployment of recovery measures. This paper presents a method for modelling and quantifying SC performance assessment for airline catering. In the COVID-19 context, the researchers proposed a Bayesian network (BN) model to measure SC performance and risk events and quantify the consequences of pandemic disruptions. The research simulates and measures the impact of different triggers on SC performance and business continuity using forward and backward propagation analysis, among other BN features, enabling us to combine various SC perspectives and explicitly account for pandemic scenarios. This study’s findings offer a fresh theoretical perspective on the use of BNs in pandemic SC disruption modelling. The findings can be used as a decision-making tool to predict and better understand how pandemics affect SC performance.Airline Catering Supply Chain Performance during Pandemic Disruption: A Bayesian Network Modelling ApproachacceptedVersio

    An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks

    Get PDF
    This paper aims to develop a novel model to assess the risk factors of maritime supply chains by incorporating a fuzzy belief rule approach with Bayesian networks. The new model, compared to traditional risk analysis methods, has the capability of improving result accuracy under a high uncertainty in risk data. A real case of a world leading container shipping company is investigated, and the research results reveal that among the most significant risk factors are transportation of dangerous goods, fluctuation of fuel price, fierce competition, unattractive markets, and change of exchange rates in sequence. Such findings will provide useful insights for accident prevention

    Gas models and three difficult objectives

    Get PDF
    Competition, security of supply and sustainability are at the core of EU energy policy. The Commission argues that making the European gas market more competitive (completing the internal gas market) will be instrumental in the pursuit of these objectives. We examine the question through the eyes of existing models of the European gas market. Can model tell us anything on this problem? Do they confirm or infirm the analysis of the Commission appearing in fundamental documents such the Green Paper, the Sector Inquiry or the new legislation package? We argue that results of existing models contradict a fundamental finding (paragraph 77) of the Sector Inquiry. We further elaborate on the basis of the economic assumption underlying the models, that changing the assumptions implicitly contained in paragraph 77 cast doubts on a large part of the reasoning justifying the completion of the internal gas market. We also explain that models could help arriving at a better definition of the relevant market, which is so important in the reasoning of the Commission. Last we also find model results that question the effectiveness of ownership unbundling. As to security of supply, we explain that models can also contribute to assess the value of additional infrastructure in the context of security of supply, but this potential seems largely untapped. Last we note that sustainability has not yet penetrated models of gas markets. We conclude by suggesting other area of immediate concern, possibly of higher technical difficulty, that modellers could address in future research.
    • 

    corecore