6,020 research outputs found

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio

    Optimizing Service Differentiation Scheme with Sized-based Queue Management in DiffServ Networks

    Get PDF
    In this paper we introduced Modified Sized-based Queue Management as a dropping scheme that aims to fairly prioritize and allocate more service to VoIP traffic over bulk data like FTP as the former one usually has small packet size with less impact to the network congestion. In the same time, we want to guarantee that this prioritization is fair enough for both traffic types. On the other hand we study the total link delay over the congestive link with the attempt to alleviate this congestion as much as possible at the by function of early congestion notification. Our M-SQM scheme has been evaluated with NS2 experiments to measure the packets received from both and total link-delay for different traffic. The performance evaluation results of M-SQM have been validated and graphically compared with the performance of other three legacy AQMs (RED, RIO, and PI). It is depicted that our M-SQM outperformed these AQMs in providing QoS level of service differentiation.Comment: 10 pages, 9 figures, 1 table, Submitted to Journal of Telecommunication

    A Taxonomy for Congestion Control Algorithms in Vehicular Ad Hoc Networks

    Full text link
    One of the main criteria in Vehicular Ad hoc Networks (VANETs) that has attracted the researchers' consideration is congestion control. Accordingly, many algorithms have been proposed to alleviate the congestion problem, although it is hard to find an appropriate algorithm for applications and safety messages among them. Safety messages encompass beacons and event-driven messages. Delay and reliability are essential requirements for event-driven messages. In crowded networks where beacon messages are broadcasted at a high number of frequencies by many vehicles, the Control Channel (CCH), which used for beacons sending, will be easily congested. On the other hand, to guarantee the reliability and timely delivery of event-driven messages, having a congestion free control channel is a necessity. Thus, consideration of this study is given to find a solution for the congestion problem in VANETs by taking a comprehensive look at the existent congestion control algorithms. In addition, the taxonomy for congestion control algorithms in VANETs is presented based on three classes, namely, proactive, reactive and hybrid. Finally, we have found the criteria in which fulfill prerequisite of a good congestion control algorithm

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Improving the performance of QoS models in MANETs through interference monitoring and correction

    Get PDF
    Mobile Ad hoc Networks (MANETs) have been proposed for a wide variety of applications, some of which require the support of real time and multimedia services. To do so, the network should be able to offer quality of service (QoS) appropriate for the latency and throughput bounds to meet appropriate real time constraints imposed by multimedia data. Due to the limited resources such as bandwidth in a wireless medium, flows need to be prioritised in order to guarantee QoS to the flows that need it. In this research, we propose a scheme to provide QoS guarantee to high priority flows in the presence of other high as well as low priority flows so that both type of flows achieve best possible throughput and end-to-end delays. Nodes independently monitor the level of interference by checking the rates of the highest priority flows and signal corrective mechanisms when these rates fall outside of specified thresholds. This research investigates using simulations the effects of a number of important parameters in MANETs, including node speed, pause time, interference, and the dynamic monitoring and correction on system performance in static and mobile scenarios. In this report we show that the dynamic monitoring and correction provides improved QoS than fixed monitoring and correction to both high priority and low priority flows in MANETs

    QoS in wireless sensor networks: survey and approach

    Get PDF
    A wireless sensor network (WSN) is a computer wireless network composed of spatially distributed and autonomous tiny nodes -- smart dust sensors, motes -, which cooperatively monitor physical or environmental conditions. Nowadays these kinds of networks support a wide range of applications, such as target tracking, security, environmental control, habitat monitoring, source detection, source localization, vehicular and traffic monitoring, health monitoring, building and industrial monitoring, etc. Many of these applications have strong requirements for end-to-end delay and losses during data transmissions. In this work we have classified the main mechanisms that have been proposed to provide Quality of Service (QoS) in WSN at Medium Access Control (MAC) and network layers. Finally, taking into account some particularities of the studied MAC- and network-layer protocols, we have selected a real application scenario in order to show how to choose an appropriate approach for guaranteeing performance in a WSN deployed application
    corecore