16,659 research outputs found

    Designing and implementing a GPS-based vehicle navigation application for Eclipse Kuksa

    Get PDF
    Abstract. With the development of the Internet of Things (IoT), connected cars are rapidly becoming an essential milestone in the design of intelligent transportation systems and a key element in smart city design. Connected cars use a three-layer client-connection-cloud architecture, and car sensors are located at the client layer. This architecture provides the driver with a large amount of data about the external environment, which reduces the number of traffic accidents and helps the car drive safely. Driving safety is the most critical design factor for next-generation vehicles. The future vision of the automotive industry is self-driving cars. However, it faces some challenges. Eclipse Kuksa provides solutions to challenges in the field of connected cars. A comprehensive ecosystem includes a complete tool stack for connected vehicles, including a vehicle platform, a cloud platform, and an application development Integrated Development Environment (IDE). Its essential function is to collect, store, and analyze vehicle data and transmit various information in the cloud. This master’s thesis aims to investigate a Global Positioning System (GPS) -based vehicle navigation application on the vehicle and cloud platforms of Eclipse Kuksa, understand how to develop a GPS-based vehicle navigation application using the Eclipse Kuksa software platform, and discuss the advantages and challenges of using Eclipse Kuksa to develop vehicle applications. The research methods are Design Science Research (DSR) and literature review. System development is carried out following the Design Science Research Methodology (DSRM) Process, developed and evaluated on the vehicle navigation application. The application artifact consists of the Eclipse Kuksa vehicle platform and cloud platform. The steps described in this paper can be used to build vehicle applications in Eclipse Kuksa. This paper also explains the benefits and challenges of using Eclipse Kuksa to develop vehicle applications. The main benefit is that open source solutions break the long-term closed development model of the automotive industry and establish a vehicle-to-cloud solution standard to meet the IoT challenges to the automotive industry. Simultaneously the challenge of using Eclipse Kuksa is the complexity of environment construction and the software and hardware compatibility

    Impact of traffic management on black carbon emissions: a microsimulation study

    Get PDF
    This paper investigates the effectiveness of traffic management tools, includ- ing traffic signal control and en-route navigation provided by variable message signs (VMS), in reducing traffic congestion and associated emissions of CO2, NOx, and black carbon. The latter is among the most significant contributors of climate change, and is associated with many serious health problems. This study combines traffic microsimulation (S-Paramics) with emission modeling (AIRE) to simulate and predict the impacts of different traffic management measures on a number traffic and environmental Key Performance Indicators (KPIs) assessed at different spatial levels. Simulation results for a real road network located in West Glasgow suggest that these traffic management tools can bring a reduction in travel delay and BC emission respectively by up to 6 % and 3 % network wide. The improvement at local levels such as junctions or corridors can be more significant. However, our results also show that the potential benefits of such interventions are strongly dependent on a number of factors, including dynamic demand profile, VMS compliance rate, and fleet composition. Extensive discussion based on the simulation results as well as managerial insights are provided to support traffic network operation and control with environmental goals. The study described by this paper was conducted under the support of the FP7-funded CARBOTRAF project

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    A Systematic Review of Urban Navigation Systems for Visually Impaired People

    Get PDF
    Blind and Visually impaired people (BVIP) face a range of practical difficulties when undertaking outdoor journeys as pedestrians. Over the past decade, a variety of assistive devices have been researched and developed to help BVIP navigate more safely and independently. In~addition, research in overlapping domains are addressing the problem of automatic environment interpretation using computer vision and machine learning, particularly deep learning, approaches. Our aim in this article is to present a comprehensive review of research directly in, or relevant to, assistive outdoor navigation for BVIP. We breakdown the navigation area into a series of navigation phases and tasks. We then use this structure for our systematic review of research, analysing articles, methods, datasets and current limitations by task. We also provide an overview of commercial and non-commercial navigation applications targeted at BVIP. Our review contributes to the body of knowledge by providing a comprehensive, structured analysis of work in the domain, including the state of the art, and guidance on future directions. It will support both researchers and other stakeholders in the domain to establish an informed view of research progress

    Towards an intelligent and supportive environment for people with physical or cognitive restrictions

    Get PDF
    AmbienNet environment has been developed with the aim of demonstrating the feasibility of accessible intelligent environments designed to support people with disabilities and older persons living independently. Its main purpose is to examine in depth the advantages and disadvantages of pervasive supporting systems based on the paradigm of Ambient Intelligence for people with sensory, physical or cognitive limitations. Hence diverse supporting technologies and applications have been designed in order to test their accessibility, ease of use and validity. This paper presents the architecture of AmbienNet intelligent environment and an intelligent application to support indoors navigation for smart wheelchairs designed for validation purposes.Ministerio de Educación y Ciencia TIN2006-15617-C[01,02,03

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201
    corecore