644,736 research outputs found

    Chromatic Contrast Sensitivity Functions and Colour Discrimination in Smoker Patients

    Get PDF
    In this study, effects of smoking on colour vision with the Farnsworth–Munsell 100 Hue test (FM100h) and achromatic (A), red-green (RG), and blue-yellow (BY) contrast sensitivity functions were evaluated. In total, 50 non-smoker controls and 25 smokers, divided into two groups (group 1, less than 10 cigarettes per day, with 15 patients, and group 2, >10 cigarettes per day, with 10 patients) took part in the experiments. Best-corrected visual acuity (BCVA), FM100h, and A, RG, and BY contrast sensitivity functions were measured. Total and partial RG and BY error scores (TES and PTES) and colour axis index (CA) were used in the analysis. No differences between smoker and non-smoker groups were found in BCVA, CA and A and BY contrast sensitivity, but TES and PTES values and RG contrast sensitivity at 1 cpd were statistically different. Differences between smoker groups were not significant. Error scores in smokers were positively correlated with the number of cigarettes smoked per day, and in BY also with age. Tobacco caused discrimination losses in both chromatic mechanisms but affected the red-green pathway more than the blue-yellow, and therefore, a partial RG score of FM100h test seems to be a good predictor of smoker colour deficiencies

    Temporal contrast sensitivity: A potential parameter for glaucoma progression, especially in advanced stages

    Get PDF
    INTRODUCTION. Previously it could be shown that temporal contrast sensitivity is affected by glaucoma and maximally influenced after 25-Hz adaptation in normals. This study investigated different kinds of 25-Hz temporal contrast adaptation on TCS in patients with ocular hypertension, preperimetric primary open-angle glaucoma, and perimetric open-angle glaucoma. Additionally, correlations of measured data with parameters of glaucoma diagnostic were done and assessed for the potential use of TCS as a parameter for glaucoma progression. MATERIALS AND METHODS. One hundred and four subjects were included: 44 normals, 14 ocular hypertensions, 11 preperimetric primary open-angle glaucomas, and 35 perimetric open-angle glaucomas. Using the Erlangen Flicker Test, temporal contrast sensitivity was measured without adaptation, after pre-adaptation and after pre- and re-adaptations at 25 Hz. Reliability analyses were done. RESULTS. All test strategies showed high reliability (a-Cronbach’s > 0.86). In normals, age-dependency of temporal contrast sensitivity without adaptation (p = 0.052) and after pre- and re-adaptation (p = 0.008) was observed. Temporal contrast sensitivity is significantly reduced after pre-adaptation for all subjects (p < 0.001). Reduction of temporal contrast sensitivity after pre- and re-adaptations was significant in all groups (p < 0.001), but it was smaller than after single pre-adaptation (p < 0.001). Temporal contrast sensitivity without adaptation was significantly reduced in patients with perimetric glaucoma (p = 0.040) but not in patients with ocular hypertension and preperimetric glaucoma. Correlation analyses yielded a significant correlation between temporal contrast sensitivity without adaptation and mean defect (p = 0.003, r = –0.329), loss variance (p = 0.027, r = –0.256), and retinal nerve fibre layer thickness (p < 0.001, r = 0.413) for all subjects and between temporal contrast sensitivity after pre-adaptation and mean defect (p = 0.045, r = –0.239). CONCLUSIONS. Temporal contrast sensitivity seems to be affected in perimetric glaucoma with an overall reduction after adaptation. Significant correlations of temporal contrast sensitivity with perimetric and morphologic parameters offer new aspects of its potential use as a glaucoma progressions marker, especially in advanced stages when perimetric diagnosis is limited

    Effect of disability glare on visual performance

    Get PDF
    The object of the study was to investigate, establish and quantify the relationship between contrast sensitivity, intraocular light scatter and glare. The aim was to establish the effects on vision, in an effort to provide a more comprehensive understanding of the visual world of subjects prone to increased light scatter in the eye. Disability glare refers to the reduction in visual performance produced by a glare source. The reduction in visual performance can be explained by intraocular scattered light producing a veiling luminance which is superimposed upon the retinal image. This veiling luminance lowers contrast thus sensitivity to the stimulus declines. The effect of glare of luminance and colour contrast sensitivity for young and elderly subjects was examined. For both age groups, disability glare was greatest for the red-green stimulus and least for the blue-yellow. The precise effect of a glare source on colour discrimination depends upon the interaction between the chromaticity of the glare source and that of the stimulus. The effect of a long wavelength pass (red) and a short wavelength pass filter (blue) on disability glare was examined. Disability glare was not significantly different with the red and blue filters, even in the presence of wavelength dependent scatter. An equation was derived which allowed an intrinsic Light Scatter Factor (LSF) to be determined for any given glare angle (Paulsson and Sjöstrand, 1980). Corrections to the formula to account for factors such as pupil size changes are unnecessary. The results confirm the suitability of measuring the LSF using contrast threshold with and without glare, provided that appropriate methods are used. Using this formula an investigation into the amount of wavelength dependent scatter indicated that wavelength dependent scatter in normal young, elderly or cataractous eyes is of little or no significance. Finally, it seemed desirable to investigate the effect ultraviolet (UV) radiation has on intraocular light scatter and subsequently visual performance. Overall the results indicated that the presence or absence of UV radiation has relatively little effect on visual function for the young, elderly or cataract patient

    Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS

    Get PDF
    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds

    Influence of contrast media dose and osmolality on the diagnostic performance of contrast fractional flow reserve

    Get PDF
    Background—Contrast fractional flow reserve (cFFR) is a method for assessing functional significance of coronary stenoses, which is more accurate than resting indices and does not require adenosine. However, contrast media volume and osmolality may affect the degree of hyperemia and therefore diagnostic performance. Methods and Results—cFFR, instantaneous wave–free ratio, distal pressure/aortic pressure at rest, and FFR were measured in 763 patients from 12 centers. We compared the diagnostic performance of cFFR between patients receiving low or iso-osmolality contrast (n=574 versus 189) and low or high contrast volume (n=341 versus 422) using FFR≤0.80 as a reference standard. The sensitivity, specificity, and overall accuracy of cFFR for the low versus iso-osmolality groups were 73%, 93%, and 85% versus 87%, 90%, and 89%, and for the low versus high contrast volume groups were 69%, 99%, and 83% versus 82%, 93%, and 88%. By receiver operating characteristics (ROC) analysis, cFFR provided better diagnostic performance than resting indices regardless of contrast osmolality and volume (P&lt;0.001 for all groups). There was no significant difference between the area under the curve of cFFR in the low- and iso-osmolality groups (0.938 versus 0.957; P=0.40) and in the low- and high-volume groups (0.939 versus 0.949; P=0.61). Multivariable logistic regression analysis showed that neither contrast osmolality nor volume affected the overall accuracy of cFFR; however, both affected the sensitivity and specificity. Conclusions—The overall accuracy of cFFR is greater than instantaneous wave–free ratio and distal pressure/aortic pressure and not significantly affected by contrast volume and osmolality. However, contrast volume and osmolality do affect the sensitivity and specificity of cFFR

    Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity.

    Get PDF
    Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation-induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P &lt; 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo(2)) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype

    Spatial contrast sensitivity in adolescents with autism spectrum disorders

    Get PDF
    Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual acuity, peak spatial frequency, peak contrast sensitivity, and contrast sensitivity at a low spatial frequency. There were no group differences on any of the four CSF measures, indicating no differential spatial frequency processing in ASD. Although it has been suggested that detail-oriented visual perception in individuals with ASD may be a result of differential sensitivities to low versus high spatial frequencies, the current study finds no evidence to support this hypothesis
    corecore