8,920 research outputs found

    Degradation of road tested automotive connectors

    No full text
    The automotive environment is particularly demanding on connector performance, and is characterized by large temperature changes, high humidity and corrosive atmospheres. This paper presents an initial study of connector performance in terms of temperature profiles taken from road vehicles. The temperature profiles are then simulated using empirical relationships to allow prediction of connector performance. Wire harnesses have been investigated to seek evidence of the connector degradation predicted from the temperature data. Initial indications are that the wire harness shows the type of fretting behavior associated with the temperature changes. Evidence of fretting corrosion was found at the contact interface on tin plated terminals from sealed and unsealed connectors

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact

    Failure analysis informing intelligent asset management

    Get PDF
    With increasing demands on the UK’s power grid it has become increasingly important to reform the methods of asset management used to maintain it. The science of Prognostics and Health Management (PHM) presents interesting possibilities by allowing the online diagnosis of faults in a component and the dynamic trending of its remaining useful life (RUL). Before a PHM system can be developed an extensive failure analysis must be conducted on the asset in question to determine the mechanisms of failure and their associated data precursors that precede them. In order to gain experience in the development of prognostic systems we have conducted a study of commercial power relays, using a data capture regime that revealed precursors to relay failure. We were able to determine important failure precursors for both stuck open failures caused by contact erosion and stuck closed failures caused by material transfer and are in a position to develop a more detailed prognostic system from this base. This research when expanded and applied to a system such as the power grid, presents an opportunity for more efficient asset management when compared to maintenance based upon time to replacement or purely on condition

    Long life assurance study for manned spacecraft long life hardware. Volume 1: Summary of long life assurance guidelines

    Get PDF
    A long life assurance program for the development of design, process, test, and application guidelines for achieving reliable spacecraft hardware was conducted. The study approach consisted of a review of technical data performed concurrently with a survey of the aerospace industry. The data reviewed included design and operating characteristics, failure histories and solutions, and similar documents. The topics covered by the guidelines are reported. It is concluded that long life hardware is achieved through meticulous attention to many details and no simple set of rules can suffice

    SCINTILLATION CONDITIONING OF TANTALUM CAPACITORS WITH MANGANESE DIOXIDE CATHODES

    Get PDF
    Scintillation testing is a method that activates the self-healing mechanism in tantalum capacitors. In preliminary experiments, the deliberate activation of self-healing yielded up to 27% higher breakdown voltages in weak parts that had an increased risk of ignition failure. This improvement results in a better performance under surge current conditions. This paper demonstrates that scintillation conditioning reduces surge current failures in tantalum capacitors with manganese dioxide cathodes. Tantalum capacitors with MnO2 cathodes from two manufacturers are subjected to scintillation conditioning and compared to non-conditioned populations in a surge current test. To ensure that the activation of the self-healing mechanism has no detrimental effect on the reliability of the parts, a life test is conducted. The results show that the conditioning method increases the breakdown voltage of self-healed tantalum capacitors by up to 25% under surge current conditions, which mitigates the risk of ignition failures. No detrimental effect on the life of the conditioned samples was observed. Additional tests to assess the reliability of tantalum capacitors with manganese dioxide cathodes under simultaneous thermo-mechanical and voltage stresses were performed. Even though these tests are not directly related to scintillation conditioning the study was included as an additional chapter, since it pertains to the general subject of tantalum capacitor reliability

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Characterization of Transient Heating in Power Electronic Devices and its Implications for Die Attached Reliability

    Get PDF
    Military and commercial interest in the use of power electronics for applications requiring extreme operating conditions and/or placement in extreme environments is driving research to identify and develop packaging technologies that can withstand these conditions. Specifically, there is an interest in the development of packaging technology than can function reliably under transient high power loading conditions. This thesis addresses the unique packaging considerations required for this type of application, with a focus on the implications on the durability of the die attach layer. Simulations of the thermal conditions experienced at the die attach layer for different power pulse magnitudes and durations are presented. A test apparatus and experimental test plan for studying the reliability of die attach materials under high power transient loading is discussed. Studies conducted to validate the test apparatus and characterize die attach reliability are described along with recommendations for further investigation of the reliability issues associated with high power, transient loading conditions

    Power Cycling Test Methods for Reliability Assessment of Power Device Modules in Respect to Temperature Stress

    Get PDF

    A Review of Micro-Contact Physics for Microelectromechanical Systems (MEMS) Metal Contact Switches

    Get PDF
    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined
    corecore