72 research outputs found

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure

    Small Cells for Broadband Internet Access in Low-Income Suburban Areas in Emerging Market Environments

    Get PDF
    Mobile broadband technologies are providing the best and most commonly used broadband connectivity in many emerging markets. In some regions such as Africa, mobile networks provide the only feasible ways for extending the socio-economic benefits of broadband Internet access to the masses. The use of small cell technologies, like femtocells provide an attractive solution for such areas as femtocells are most cost – effective option for coverage and capacity expansion. Furthermore, femtocells are operator managed access points which can be easily deployed and operated by the end user. It is well known that increased densification of cell sites is the most effective means for broadband mobile network capacity and coverage enhancements. However, cell densification through adding new macrocell sites by operators is usually a costly option. Therefore, this thesis will investigate methods to achieve mobile broadband capacity and coverage enhancements in low – income informal settlements or slum area, through more cost – effective cell densification using femtocells. Moreover this thesis will validate the performance gains of small cell concept for the case study through extensive simulations. The impacts of femtocell in the network, the performance gain from femtocell and gain provided by different deployment strategies have been studied. Simulation results highlight the potential benefits of using femtocells in the network for extended broadband connectivity. With the femto increment the network performance increases up to a great extent

    Load balancing using cell range expansion in LTE advanced heterogeneous networks

    Get PDF
    The use of heterogeneous networks is on the increase, fueled by consumer demand for more data. The main objective of heterogeneous networks is to increase capacity. They offer solutions for efficient use of spectrum, load balancing and improvement of cell edge coverage amongst others. However, these solutions have inherent challenges such as inter-cell interference and poor mobility management. In heterogeneous networks there is transmit power disparity between macro cell and pico cell tiers, which causes load imbalance between the tiers. Due to the conventional user-cell association strategy, whereby users associate to a base station with the strongest received signal strength, few users associate to small cells compared to macro cells. To counter the effects of transmit power disparity, cell range expansion is used instead of the conventional strategy. The focus of our work is on load balancing using cell range expansion (CRE) and network utility optimization techniques to ensure fair sharing of load in a macro and pico cell LTE Advanced heterogeneous network. The aim is to investigate how to use an adaptive cell range expansion bias to optimize Pico cell coverage for load balancing. Reviewed literature points out several approaches to solve the load balancing problem in heterogeneous networks, which include, cell range expansion and utility function optimization. Then, we use cell range expansion, and logarithmic utility functions to design a load balancing algorithm. In the algorithm, user and base station associations are optimized by adapting CRE bias to pico base station load status. A price update mechanism based on a suboptimal solution of a network utility optimization problem is used to adapt the CRE bias. The price is derived from the load status of each pico base station. The performance of the algorithm was evaluated by means of an LTE MATLAB toolbox. Simulations were conducted according to 3GPP and ITU guidelines for modelling heterogeneous networks and propagation environment respectively. Compared to a static CRE configuration, the algorithm achieved more fairness in load distribution. Further, it achieved a better trade-off between cell edge and cell centre user throughputs. [Please note: this thesis file has been deferred until December 2016

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Techniques for Efficient Spectrum Usage for Next Generation Mobile Communication Networks. An LTE and LTE-A Case Study

    Get PDF

    The Future of LTE: The Femtocells perspective

    Get PDF
    The Femtocell is one of the constituents of the LTE-Advanced technology components. It is categorized under the heterogeneous network's small cell concepts. In order to meet one of the most essential desires of mobile network - better coverage and enhanced system capacity, femtocell has offered and will offer most definitely a comprehensive solution to the service providers and subscribers alike. A detail presentation of the past, the present and the future of the femtocell technology has been studied and considered from the perspective of the LTE straight to LTE-Advanced; and tailored to the variants existence of the femto-cellular architecture. The much benefits of the femtocells does leave some points of thought for challenges in the existing deployments; to the users', a concern for privacy and confidentiality; and to the operators, most importantly, cost reduction, better coverage and security. That did not leave out the quest to have improved system deployment by considering issues like Interferences, Mobility and Handover, Backhauling, Self-Organizing Networks, Synchronization and so on. The aim of this thesis is to examine in a top-down approach the femtocells as an important component of the developing LTE-Advanced Technology, with essential projection into the future of the femto-cellular technology and what the future holds for its deployment for operators. To loathe it or to like it! The global success of the femtocells will determine its future at best

    Dimensioning mobile WiMAX in the access and core network : a case study

    Get PDF
    Existing broadband wireless technologies such as evolving 3G and WiFi have enjoyed widespread adoption but are far from offering the flexibility in deployment and high data rates. Mobile WiMAX, an emerging broadband wireless technology promises to bring a new experience to mobile broadband services by offering users high data rates and efficient network access techniques. This thesis work provides a technical description of mobile WiMAX and compares its technical capabilities with the existing technologies such as WiFi and 3G. The work continues further on dimensioning mobile WiMAX in the access and core network. In the access network, we determine the number of base stations required to cover a given metropolitan area, explore their configurations, and perform frequency selection. In the core network we dimension the interfaces, and nodes involved. From the study we will show that WiMAX provides the operator with the antenna configurations options of high capacities, large cell coverage area, and a wide selection of QoS classes. The study will also show that the data density requirements of customers, resulting from the capacity analysis are fulfilled by properly dimensioning the elements in the access and core network
    corecore