20 research outputs found

    Porphyrins as Colorimetric Indicators for Detection and Identification of Chemical and Biological Agents

    Get PDF
    The objective of this study was to design sensor surfaces for rapid, real-time, optical detection of chemical/biological warfare agents and/or environmental pollutants that yield a minimum of false readings. Porphyrins were used as colorimetric indicators for transduction in surfaces using biological recognition elements such as enzymes and as combination recognition element/transducer in other surfaces. Immobilization protocols and assaying procedures were developed for each of the sensor surfaces. As a reversible, competitive inhibitor of enzymes, porphyrins can be used for identification and quantification of the presence of a substrate or another competitive inhibitor of the enzyme. This technique has been useful for development of glass surfaces for the detection of cholinesterase inhibitors such as organophosphate compounds and nerve agent simulants at parts per trillion levels using acetylcholinesterase, butyrylcholinesterase, and organophosphorous hydrolase as recognition elements. Evanescent wave aDepartment of Physic

    Optical Biosensors for Label-Free Detection of Small Molecules

    Get PDF
    Label-free optical biosensors are an intriguing option for the analyses of many analytes, as they offer several advantages such as high sensitivity, direct and real-time measurement in addition to multiplexing capabilities. However, development of label-free optical biosensors for small molecules can be challenging as most of them are not naturally chromogenic or fluorescent, and in some cases, the sensor response is related to the size of the analyte. To overcome some of the limitations associated with the analysis of biologically, pharmacologically, or environmentally relevant compounds of low molecular weight, recent advances in the field have improved the detection of these analytes using outstanding methodology, instrumentation, recognition elements, or immobilization strategies. In this review, we aim to introduce some of the latest developments in the field of label-free optical biosensors with the focus on applications with novel innovations to overcome the challenges related to small molecule detection. Optical label-free methods with different transduction schemes, including evanescent wave and optical fiber sensors, surface plasmon resonance, surface-enhanced Raman spectroscopy, and interferometry, using various biorecognition elements, such as antibodies, aptamers, enzymes, and bioinspired molecularly imprinted polymers, are reviewed

    Advanced Electrochemical and Opto-Electrochemical Biosensors for Quantitative Analysis of Disease Markers and Viruses

    Get PDF
    The recent global events of the SARS-CoV-2 pandemic in 2020 have alerted the world to the urgent need to develop fast, sensitive, simple, and inexpensive analytical tools that are capable of carrying out a large number of quantitative analyses, not only in centralized laboratories and core facilities but also on site and for point-of-care applications. In particular, in the case of immunological tests, the required sensitivity and specificity is often lacking when carrying out large-scale screening using decentralized methods, while a centralized laboratory with qualified personnel is required for providing quantitative and reliable responses. The advantages typical of electrochemical and optical biosensors (low cost and easy transduction) can nowadays be complemented in terms of improved sensitivity by combining electrochemistry (EC) with optical techniques such as electrochemiluminescence (ECL), EC/surface-enhanced Raman spectroscopy (SERS), and EC/surface plasmon resonance (SPR). This Special Issue addresses existing knowledge gaps and aids in exploring new approaches, solutions, and applications for opto-electrochemical biosensors in the quantitative detection of disease markers, such as cancer biomarkers proteins and allergens, and pathogenic agents such as viruses. Included are seven peer-reviewed papers that cover a range of subjects and applications related to the strategies developed for early diagnosis

    Novel Analytical Methods in Food Analysis

    Get PDF
    This reprint provides information on the novel analytical methods used to address challenges occurring at academic, regulatory, and commercial level. All topics covered include information on the basic principles, procedures, advantages, limitations, and applications. Integration of biological reagents, (nano)materials, technologies, and physical principles (spectroscopy and spectrometry) are discussed. This reprint is ideal for professionals of the food industry, regulatory bodies, as well as researchers

    Fundamentals, Applications, and Future Directions of Bioelectrocatalysis

    Get PDF
    Bioelectrocatalysis is an interdisciplinary research field combining bio-catalysis and electrocatalysis via the utilization of materials derived from biological systems as catalysts to catalyze the redox reactions occurring at an electrode. Bioelectrocatalysis synergistically couples the merits of both biocatalysis and electrocatalysis. The advantages of biocatalysis include high activity, high selectivity, wide substrate scope, and mild reaction conditions. The advantages of electrocatalysis include the possible utilization of renewable electricity as an electron source and high energy conversion efficiency. These properties are integrated to achieve selective biosensing, efficient energy conversion, and the production of diverse products. This review seeks to systematically and comprehensively detail the fundamentals, analyze the existing problems, summarize the development status and applications, and look toward the future development directions of bioelectrocatalysis. First, the structure, function, and modification of bioelectrocatalysts are discussed. Second, the essentials of bioelectrocatalytic systems, including electron transfer mechanisms, electrode materials, and reaction medium, are described. Third, the application of bioelectrocatalysis in the fields of biosensors, fuel cells, solar cells, catalytic mechanism studies, and bioelectrosyntheses of high-value chemicals are systematically summarized. Finally, future developments and a perspective on bioelectrocatalysis are suggested

    Nano-enable materials promoting sustainability and resilience in modern agriculture

    Get PDF
    Intensive conventional agriculture and climate change have induced severe ecological damages and threatened global food security, claiming a reorientation of agricultural management and public policies towards a more sustainable development model. In this context, nanomaterials promise to support this transition by promoting mitigation, enhancing productivity, and reducing contamination. This review gathers recent research innovations on smart nanoformulations and delivery systems improving crop protection and plant nutrition, nanoremediation strategies for contaminated soils, nanosensors for plant health and food quality and safety monitoring, and nanomaterials as smart food-packaging. It also highlights the impact of engineered nanomaterials on soil microbial communities, and potential environmental risks, along with future research directions. Although large-scale production and in-field testing of nano-agrochemicals are still ongoing, the collected information indicates improvements in uptake, use efficiency, targeted delivery of the active ingredients, and reduction of leaching and pollution. Nanoremediation seems to have a low negative impact on microbial communities while promoting biodiversity. Nanosensors enable high-resolution crop monitoring and sustainable management of the resources, while nano-packaging confers catalytic, antimicrobial, and barrier properties, preserving food safety and preventing food waste. Though, the application of nanomaterials to the agri-food sector requires a specific risk assessment supporting proper regulations and public acceptance.Fil: Ur Rahim, Hafeez. Dalian University Of Technology; ChinaFil: Qaswar, Muhammad. University of Ghent; BĂ©lgicaFil: Uddin, Misbah. Dalian University Of Technology; ChinaFil: Giannini, Cinzia. Consiglio Nazionale delle Ricerche; ItaliaFil: Herrera, Maria Lidia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de TecnologĂ­a en PolĂ­meros y NanotecnologĂ­a. Universidad de Buenos Aires. Facultad de IngenierĂ­a. Instituto de TecnologĂ­a en PolĂ­meros y NanotecnologĂ­a; ArgentinaFil: Rea, Giuseppina. Consiglio Nazionale delle Ricerche; Itali

    Cellulose-Based Biosensing Platforms

    Get PDF
    Cellulose empowers measurement science and technology with a simple, low-cost, and highly transformative analytical platform. This book helps the reader to understand and build an overview of the state of the art in cellulose-based (bio)sensing, particularly in terms of the design, fabrication, and advantageous analytical performance. In addition, wearable, clinical, and environmental applications of cellulose-based (bio)sensors are reported, where novel (nano)materials, architectures, signal enhancement strategies, as well as real-time connectivity and portability play a critical role

    Biosensors: 10th Anniversary Feature Papers

    Get PDF
    Biosensors are analytical devices used for the detection of a chemical substance, or analyte, which combines a biological component with a physicochemical detector. Detection and quantification are based on the measurement of the biological interactions. The biological element of a biosensor may consist of tissues, microorganisms, organelles, cell receptors, enzymes, antibodies and nucleic acids. These devices have been shown to have a wide range of applications in a vast array of fields of research, including environmental monitoring, food analysis, drug detection and health and clinical assessment, and even security and safety. The current Special Issue, “Biosensors: 10th Anniversary Feature Papers”, addresses the existing knowledge gaps and aids the advancement of biosensing applications, in the form of six peer-reviewed research and review papers, detailing the most recent and innovative developments of biosensors
    corecore