17,499 research outputs found

    Agents in Bioinformatics

    No full text
    The scope of the Technical Forum Group (TFG) on Agents in Bioinformatics (BIOAGENTS) was to inspire collaboration between the agent and bioinformatics communities with the aim of creating an opportunity to propose a different (agent-based) approach to the development of computational frameworks both for data analysis in bioinformatics and for system modelling in computational biology. During the day, the participants examined the future of research on agents in bioinformatics primarily through 12 invited talks selected to cover the most relevant topics. From the discussions, it became clear that there are many perspectives to the field, ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages for use by information agents, and to the use of Grid agents, each of which requires further exploration. The interactions between participants encouraged the development of applications that describe a way of creating agent-based simulation models of biological systems, starting from an hypothesis and inferring new knowledge (or relations) by mining and analysing the huge amount of public biological data. In this report we summarise and reflect on the presentations and discussions

    gcodeml: A Grid-enabled Tool for Detecting Positive Selection in Biological Evolution

    Get PDF
    One of the important questions in biological evolution is to know if certain changes along protein coding genes have contributed to the adaptation of species. This problem is known to be biologically complex and computationally very expensive. It, therefore, requires efficient Grid or cluster solutions to overcome the computational challenge. We have developed a Grid-enabled tool (gcodeml) that relies on the PAML (codeml) package to help analyse large phylogenetic datasets on both Grids and computational clusters. Although we report on results for gcodeml, our approach is applicable and customisable to related problems in biology or other scientific domains.Comment: 10 pages, 4 figures. To appear in the HealthGrid 2012 con

    Report of the user requirements and web based access for eResearch workshops

    Get PDF
    The User Requirements and Web Based Access for eResearch Workshop, organized jointly by NeSC and NCeSS, was held on 19 May 2006. The aim was to identify lessons learned from e-Science projects that would contribute to our capacity to make Grid infrastructures and tools usable and accessible for diverse user communities. Its focus was on providing an opportunity for a pragmatic discussion between e-Science end users and tool builders in order to understand usability challenges, technological options, community-specific content and needs, and methodologies for design and development. We invited members of six UK e-Science projects and one US project, trying as far as possible to pair a user and developer from each project in order to discuss their contrasting perspectives and experiences. Three breakout group sessions covered the topics of user-developer relations, commodification, and functionality. There was also extensive post-meeting discussion, summarized here. Additional information on the workshop, including the agenda, participant list, and talk slides, can be found online at http://www.nesc.ac.uk/esi/events/685/ Reference: NeSC report UKeS-2006-07 available from http://www.nesc.ac.uk/technical_papers/UKeS-2006-07.pd

    User-oriented security supporting inter-disciplinary life science research across the grid

    Get PDF
    Understanding potential genetic factors in disease or development of personalised e-Health solutions require scientists to access a multitude of data and compute resources across the Internet from functional genomics resources through to epidemiological studies. The Grid paradigm provides a compelling model whereby seamless access to these resources can be achieved. However, the acceptance of Grid technologies in this domain by researchers and resource owners must satisfy particular constraints from this community - two of the most critical of these constraints being advanced security and usability. In this paper we show how the Internet2 Shibboleth technology combined with advanced authorisation infrastructures can help address these constraints. We demonstrate the viability of this approach through a selection of case studies across the complete life science spectrum

    Jeeva: Enterprise Grid-enabled Web Portal for Protein Secondary Structure Prediction

    Get PDF
    This paper presents a Grid portal for protein secondary structure prediction developed by using services of Aneka, a .NET-based enterprise Grid technology. The portal is used by research scientists to discover new prediction structures in a parallel manner. An SVM (Support Vector Machine)-based prediction algorithm is used with 64 sample protein sequences as a case study to demonstrate the potential of enterprise Grids.Comment: 7 page

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    BioNessie - a grid enabled biochemical networks simulation environment

    Get PDF
    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations
    corecore