61 research outputs found

    Enhanced Fireworks Algorithm-Auto Disturbance Rejection Control Algorithm for Robot Fish Path Tracking

    Get PDF
    The robot fish is affected by many unknown internal and external interference factors when it performs path tracking in unknown waters. It was proposed that a path tracking method based on the EFWA-ADRC (enhanced fireworks algorithmauto disturbance rejection control) to obtain high-quality tracking effect. ADRC has strong adaptability and robustness. It is an effective method to solve the control problems of nonlinearity, uncertainty, strong interference, strong coupling and large time lag. For the optimization of parameters in ADRC, the enhanced fireworks algorithm (EFWA) is used for online adjustment. It is to improve the anti-interference of the robot fish in the path tracking process. The multi-joint bionic robot fish was taken as the research object in the paper. It was established a path tracking error model in the Serret-Frenet coordinate system combining the mathematical model of robotic fish. It was focused on the forward speed and steering speed control rate. It was constructed that the EFWA-ADRC based path tracking system. Finally, the simulation and experimental results show that the control method based on EFWAADRC and conventional ADRC makes the robotic fish track the given path at 2:8s and 3:3s respectively, and the tracking error is kept within plus or minus 0:09m and 0:1m respectively. The new control method tracking steady-state error was reduces by 10% compared with the conventional ADRC. It was proved that the proposed EFWA-ADRC controller has better control effect on the controlled system, which is subject to strong interference

    A novel adaptive PD-type iterative learning control of the PMSM servo system with the friction uncertainty in low speeds

    Get PDF
    High precision demands in a large number of emerging robotic applications strengthened the role of the modern control laws in the position control of the Permanent Magnet Synchronous Motor (PMSM) servo system. This paper proposes a learning-based adaptive control approach to improve the PMSM position tracking in the presence of the friction uncertainty. In contrast to most of the reported works considering the servos operating at high speeds, this paper focuses on low speeds in which the friction stemmed deteriorations become more obvious. In this paper firstly, a servo model involving the Stribeck friction dynamics is formulated, and the unknown friction parameters are identified by a genetic algorithm from the offline data. Then, a feedforward controller is designed to inject the friction information into the loop and eliminate it before causing performance degradations. Since the friction is a kind of disturbance and leads to uncertainties having time-varying characters, an Adaptive Proportional Derivative (APD) type Iterative Learning Controller (ILC) named as the APD-ILC is designed to mitigate the friction effects. Finally, the proposed control approach is simulated in MATLAB/Simulink environment and it is compared with the conventional Proportional Integral Derivative (PID) controller, Proportional ILC (P-ILC), and Proportional Derivative ILC (PD-ILC) algorithms. The results confirm that the proposed APD-ILC significantly lessens the effects of the friction and thus noticeably improves the control performance in the low speeds of the PMSM

    A Survey on Recent Trends of PIO and Its Variants Applied for Motion Planning of Dynamic Agents

    Get PDF
    Pigeon Inspired Optimization (PIO) algorithm is gaining popularity since its development due to faster convergence ability with great efficiencies when compared with other bio-inspired algorithms. The navigation capability of homing pigeons has been precisely used in Pigeon Inspired Optimization algorithm and continuous advancement in existing algorithms is making it more suitable for complex optimization problems in various fields. The main theme of this survey paper is to introduce the basics of PIO along with technical advancements of PIO for the motion planning techniques of dynamic agents. The survey also comprises of findings and limitations of proposed work since its development to help the research scholar around the world for particular algorithm selection especially for motion planning. This survey might be extended up to application based in order to understand the importance of algorithm in future studies

    Motion Planning

    Get PDF
    Motion planning is a fundamental function in robotics and numerous intelligent machines. The global concept of planning involves multiple capabilities, such as path generation, dynamic planning, optimization, tracking, and control. This book has organized different planning topics into three general perspectives that are classified by the type of robotic applications. The chapters are a selection of recent developments in a) planning and tracking methods for unmanned aerial vehicles, b) heuristically based methods for navigation planning and routes optimization, and c) control techniques developed for path planning of autonomous wheeled platforms

    Multimodal series elastic actuator for human-machine interaction with applications in robot-aided rehabilitation

    Get PDF
    Series elastic actuators (SEAs) are becoming an elemental building block in collaborative robotic systems. They introduce an elastic element between the mechanical drive and the end-effector, making otherwise rigid structures compliant when in contact with humans. Topologically, SEAs are more amenable to accurate force control than classical actuation techniques, as the elastic element may be used to provide a direct force estimate. The compliant nature of SEAs provides the potential to be applied in robot-aided rehabilitation. This thesis proposes the design of a novel SEA to be used in robot-aided musculoskeletal rehabilitation. An active disturbance rejection controller is derived and experimentally validated and multiobjective optimization is executed to tune the controller for best performance in human-machine interaction. This thesis also evaluates the constrained workspaces for individuals experiencing upper-limb musculoskeletal disorders. This evaluation can be used as a tool to determine the kinematic structure of devices centred around the novel SEA

    A trajectory-tracking controller for improving the safety and stability of four-wheel steering autonomous vehicles

    Get PDF
    To achieve anti-crosswind, anti-sideslip, and anti-rollover in trajectory-tracking for Four-Wheel Steering (4WS) autonomous vehicles, a trajectory-tracking controller based on a four-channel Active Disturbance Rejection Control (ADRC) was used to track the desired lateral displacement, longitudinal displacement, yaw angle, and roll angle, and minimize the tracking errors between the actual output values and the desired values through static decoupling steering and braking systems. In addition, the anti-crosswind, anti-sideslip, and anti-rollover simulations were implemented with CarSim®. Finally, the simulation results showed that the 4WS autonomous vehicle with the controller still has good anti-crosswind, anti-sideslip, and anti-rollover performance in path tracking, even under a small turning radius or lowadhesion curved roads. First published online 12 March 202

    Full 3D motion control for programmable bevel-tip steerable needles

    Get PDF
    Minimally invasive surgery has been in the focus of many researchers due to its reduced intra- and post-operative risks when compared to an equivalent open surgery approach. In the context of minimally invasive surgery, percutaneous intervention, and particularly, needle insertions, are of great importance in tumour-related therapy and diagnosis. However, needle and tissue deformation occurring during needle insertion often results in misplacement of the needles, which leads to complications, such as unsuccessful treatment and misdiagnosis. To this end, steerable needles have been proposed to compensate for placement errors by allowing curvilinear navigation. A particular type of steerable needle is the programmable bevel-tip steerable needle (PBN), which is a bio-inspired needle that consists of relatively soft and slender segments. Due to its flexibility and bevel-tip segments, it can navigate through 3D curvilinear paths. In PBNs, steering in a desired direction is performed by actuating particular PBN segments. Therefore, the pose of each segment is needed to ensure that the correct segment is actuated. To this end, in this thesis, proprioceptive sensing methods for PBNs were investigated. Two novel methods, an electromagnetic (EM)-based tip pose estimation method and a fibre Bragg grating (FBG)-based full shape sensing method, were presented and evaluated. The error in position was observed to be less than 1.08 mm and 5.76 mm, with the proposed EM-based tip tracking and FBG-based shape reconstruction methods, respectively. Moreover, autonomous path-following controllers for PBNs were also investigated. A closed-loop, 3D path-following controller, which was closed via feedback from FBG-inscribed multi-core fibres embedded within the needle, was presented. The nonlinear guidance law, which is a well-known approach for path-following control of aerial vehicles, and active disturbance rejection control (ADRC), which is known for its robustness within hard-to-model environments, were chosen as the control methods. Both linear and nonlinear ADRC were investigated, and the approaches were validated in both ex vivo brain and phantom tissue, with some of the experiments involving moving targets. The tracking error in position was observed to be less than 6.56 mm.Open Acces

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies
    corecore