40,532 research outputs found

    Improvement of the digital radiographic images of old paintings on wooden support through the anisotropic diffusion method

    Full text link
    [EN] The main defect types of historic-artistic paintings on wood are ruptures, scratches, twisting and suchwhich may be inflicted by environment conditions, insects, dust, and dirt as well as by physical damage.The exact localization of the defects and determination of their extent may be achieved using industrialradiography as a non-destructive testing method. The radiographs thus produced may suffer from blurri-ness mainly due to the inherent scattering of X-rays especially in the case of paintings on a wooden baseand hindering therefore accurate detection of the size and shape of such defects. Image processing meth-ods have been employed to reduce the blurriness of images leading to improved analysis of the images. Inthis study, an image processing method based on anisotropic diffusion with an automatic threshold levelwas applied to achieve improved outcomes. The reconstructed images of the implemented algorithmyielded sharper edges. Defects such as those due to xylophagous attack, the effect of the brushstrokes,superficial fissures, oxidation of the nails, and the different types of construction woods were bettervisualized than from the original image. The algorithm was shown to be useful by operators includingpainting conservators for their procedures.Madrid GarcĂ­a, JA.; Yahaghi, E.; Movafeghi, A. (2021). Improvement of the digital radiographic images of old paintings on wooden support through the anisotropic diffusion method. Journal of Cultural Heritage. (49):115-122. https://doi.org/10.1016/j.culher.2021.02.008S1151224

    A comparative study of image processing thresholding algorithms on residual oxide scale detection in stainless steel production lines

    Get PDF
    The present work is intended for residual oxide scale detection and classification through the application of image processing techniques. This is a defect that can remain in the surface of stainless steel coils after an incomplete pickling process in a production line. From a previous detailed study over reflectance of residual oxide defect, we present a comparative study of algorithms for image segmentation based on thresholding methods. In particular, two computational models based on multi-linear regression and neural networks will be proposed. A system based on conventional area camera with a special lighting was installed and fully integrated in an annealing and pickling line for model testing purposes. Finally, model approaches will be compared and evaluated their performance..Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Autonomous robotic system for thermographic detection of defects in upper layers of carbon fiber reinforced polymers

    Get PDF
    Carbon Fiber Reinforced Polymers (CFRPs) are composites whose interesting properties, like high strength-to-weight ratio and rigidity, are of interest in many industrial fields. Many defects affecting their production process are due to the wrong distribution of the thermosetting polymer in the upper layers. In this work, they are effectively and efficiently detected by automatically analyzing the thermographic images obtained by Pulsed Phase Thermography (PPT) and comparing them with a defect-free reference. The flash lamp and infrared camera needed by PPT are mounted on an industrial robot so that surfaces of CFRP automotive components, car side blades in our case, can be inspected in a series of static tests. The thermographic image analysis is based on local contrast adjustment via UnSharp Masking (USM) and takes also advantage of the high level of knowledge of the entire system provided by the calibration procedures. This system could replace manual inspection leading to a substantial increase in efficiency

    Thermographic non-destructive evaluation for natural fiber-reinforced composite laminates

    Get PDF
    Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was give

    Application and comparison of three tomographic techniques for detection of decay in trees

    No full text
    This paper reports application of electric, ultrasonic, and georadar tomography for detection of decay in trees and their comparison with the traditional penetrometer. Their feasibility in arboriculture is also evaluated, critically considering some "open problems." The experiments were carried out in an urban environment on two plane (Platanus hybrida Brot.) trees. Both trees, after felling, showed extensive white rot in the central cylinder. The electric tomography revealed low resistivity zones roughly centered in the trunk. A comparison with the successively cut sections showed a fine correspondence to decayed areas and a strong correspondence between high moisture zones and low resistivity zones. Ultrasonic tomography demonstrated to be a very effective tool for the detection of internal decay, accurately locating the position of the anomalies and estimating their size, shape, and characteristic in terms of mechanical properties. With the georadar technique, the high contrast of electromagnetic impedance measured between the inner decayed section and the outside sound section allowed the detection of the interface between the sound and decayed section of the tree, using radar acquisition in reflection modality. The penetrometer profiles detected the low-resistance areas inside the two trunk

    Towards Visually Explaining Variational Autoencoders

    Get PDF
    Recent advances in Convolutional Neural Network (CNN) model interpretability have led to impressive progress in visualizing and understanding model predictions. In particular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these methods are designed for classification and categorization tasks, and their extension to explaining generative models, e.g. variational autoencoders (VAE) is not trivial. In this work, we take a step towards bridging this crucial gap, proposing the first technique to visually explain VAEs by means of gradient-based attention. We present methods to generate visual attention from the learned latent space, and also demonstrate such attention explanations serve more than just explaining VAE predictions. We show how these attention maps can be used to localize anomalies in images, demonstrating state-of-the-art performance on the MVTec-AD dataset. We also show how they can be infused into model training, helping bootstrap the VAE into learning improved latent space disentanglement, demonstrated on the Dsprites dataset

    Survey of Object Detection Methods in Camouflaged Image

    Get PDF
    Camouflage is an attempt to conceal the signature of a target object into the background image. Camouflage detection methods or Decamouflaging method is basically used to detect foreground object hidden in the background image. In this research paper authors presented survey of camouflage detection methods for different applications and areas

    Foreign Object Detection and Quantification of Fat Content Using A Novel Multiplexing Electric Field Sensor

    Full text link
    There is an ever growing need to ensure the quality of food and assess specific quality parameters in all the links of the food chain, ranging from processing, distribution and retail to preparing food. Various imaging and sensing technologies, including X-ray imaging, ultrasound, and near infrared reflectance spectroscopy have been applied to the problem. Cost and other constraints restrict the application of some of these technologies. In this study we test a novel Multiplexing Electric Field Sensor (MEFS), an approach that allows for a completely non-invasive and non-destructive testing approach. Our experiments demonstrate the reliable detection of certain foreign objects and provide evidence that this sensor technology has the capability of measuring fat content in minced meat. Given the fact that this technology can already be deployed at very low cost, low maintenance and in various different form factors, we conclude that this type of MEFS is an extremely promising technology for addressing specific food quality issues

    NDE: An effective approach to improved reliability and safety. A technology survey

    Get PDF
    Technical abstracts are presented for about 100 significant documents relating to nondestructive testing of aircraft structures or related structural testing and the reliability of the more commonly used evaluation methods. Particular attention is directed toward acoustic emission; liquid penetrant; magnetic particle; ultrasonics; eddy current; and radiography. The introduction of the report includes an overview of the state-of-the-art represented in the documents that have been abstracted
    • …
    corecore