18,113 research outputs found

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings

    DEVELOPMENT OF A MODULAR AGRICULTURAL ROBOTIC SPRAYER

    Get PDF
    Precision Agriculture (PA) increases farm productivity, reduces pollution, and minimizes input costs. However, the wide adoption of existing PA technologies for complex field operations, such as spraying, is slow due to high acquisition costs, low adaptability, and slow operating speed. In this study, we designed, built, optimized, and tested a Modular Agrochemical Precision Sprayer (MAPS), a robotic sprayer with an intelligent machine vision system (MVS). Our work focused on identifying and spraying on the targeted plants with low cost, high speed, and high accuracy in a remote, dynamic, and rugged environment. We first researched and benchmarked combinations of one-stage convolutional neural network (CNN) architectures with embedded or mobile hardware systems. Our analysis revealed that TensorRT-optimized SSD-MobilenetV1 on an NVIDIA Jetson Nano provided sufficient plant detection performance with low cost and power consumption. We also developed an algorithm to determine the maximum operating velocity of a chosen CNN and hardware configuration through modeling and simulation. Based on these results, we developed a CNN-based MVS for real-time plant detection and velocity estimation. We implemented Robot Operating System (ROS) to integrate each module for easy expansion. We also developed a robust dynamic targeting algorithm to synchronize the spray operation with the robot motion, which will increase productivity significantly. The research proved to be successful. We built a MAPS with three independent vision and spray modules. In the lab test, the sprayer recognized and hit all targets with only 2% wrong sprays. In the field test with an unstructured crop layout, such as a broadcast-seeded soybean field, the MAPS also successfully sprayed all targets with only a 7% incorrect spray rate

    Research status of agricultural robot technology

    Get PDF
    According to the different agricultural production uses, agricultural robots were classified, mainly including agricultural information collection robots, pruning robots, grafting robots, transplanting robots, spraying robots and picking robots. The research status of mainstream agricultural robots at home and abroad were introduced, and their working principles and characteristics were expounded. Finally, the problems existing in the key technologies of existing agricultural robots and their future development directions were put forward

    Visualizing dimensionality reduction of systems biology data

    Full text link
    One of the challenges in analyzing high-dimensional expression data is the detection of important biological signals. A common approach is to apply a dimension reduction method, such as principal component analysis. Typically, after application of such a method the data is projected and visualized in the new coordinate system, using scatter plots or profile plots. These methods provide good results if the data have certain properties which become visible in the new coordinate system and which were hard to detect in the original coordinate system. Often however, the application of only one method does not suffice to capture all important signals. Therefore several methods addressing different aspects of the data need to be applied. We have developed a framework for linear and non-linear dimension reduction methods within our visual analytics pipeline SpRay. This includes measures that assist the interpretation of the factorization result. Different visualizations of these measures can be combined with functional annotations that support the interpretation of the results. We show an application to high-resolution time series microarray data in the antibiotic-producing organism Streptomyces coelicolor as well as to microarray data measuring expression of cells with normal karyotype and cells with trisomies of human chromosomes 13 and 21

    Sensing and Automation Technologies for Ornamental Nursery Crop Production: Current Status and Future Prospects

    Get PDF
    The ornamental crop industry is an important contributor to the economy in the United States. The industry has been facing challenges due to continuously increasing labor and agricultural input costs. Sensing and automation technologies have been introduced to reduce labor requirements and to ensure efficient management operations. This article reviews current sensing and automation technologies used for ornamental nursery crop production and highlights prospective technologies that can be applied for future applications. Applications of sensors, computer vision, artificial intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are reviewed. Some advanced technologies, including 3D cameras, enhanced deep learning models, edge computing, radio-frequency identification (RFID), and integrated robotics used for other cropping systems, are also discussed as potential prospects. This review concludes that advanced sensing, AI and robotic technologies are critically needed for the nursery crop industry. Adapting these current and future innovative technologies will benefit growers working towards sustainable ornamental nursery crop production

    Evaluating droplet distribution of spray-nozzles for dust reduction in livestock buildings using machine vision

    Get PDF
    Previous studies have demonstrated the negative effects of sub-optimal air quality on profitability, production efficiency, environmental sustainability and animal welfare. Experiments were conducted to assess potential environmental improvement techniques such as installing oil-spraying systems in piggery buildings. The developed spray system worked very well and it was easy to assemble and operate. However, before selecting the most suitable spray heads, their capacity to uniformly distribute the oily mixture and the area covered by the spray heads had to be assessed. Machine vision techniques were used to evaluate the ability of different spray heads to evenly distribute the oil/water mixture. The results indicated that the best coverage was achieved by spray head No.4 and spray head No.1 which covered 79% and 67% of the target area, respectively. Spray distribution uniformity (variance) value was the lowest for spray head No.4 (0.015). Spray head No.3 had the highest variance value (0.064). As the lowest variance means higher uniformity, nozzle No.4 was identified as the most suitable spray head for dust reduction in livestock buildings
    • …
    corecore