181 research outputs found

    Total Ionizing Dose Effect on Deep Neural Networks Implemented with Multi-Level RRAM Arrays

    Get PDF
    This research work presents a methodology for simulating the effects of total ionizing dose (TID) radiation upon RRAM-based neural network accelerators. The experimental data on irradiating a 256×256 RRAM array test chip with Co-60 gamma rays up to a maximum TID of 1 Mrad (Si) were characterized with statistical methods in order to model the drift in RRAM cell conductance as a function of TID level. Multiple deep neural network (DNN) models were developed in the PyTorch framework in order to evaluate the effects of TID on DNNs implemented in hardware with similar RRAM memory technology and levels of radiation exposure. Using the statistical parameters discovered from the experimental TID data, weight changes were injected into the DNNs in order to simulate TID radiation effects and evaluate the resultant change of inference accuracy. Multiple simulations were conducted adhering to this methodology and the results pertaining to TID-induced inference accuracy degradation are discussed further in this work.M.S

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    High-Performance, Radiation-Hardened Electronics for Space Environments

    Get PDF
    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule

    Center for Space Microelectronics Technology

    Get PDF
    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Development and Qualification of an FPGA-Based Multi-Processor System-on-Chip On-Board Computer for LEO Satellites

    Get PDF
    九州工業大学博士学位論文 学位記番号:工博甲第374号 学位授与年月日:平成26年9月26日Chapter 1: Introduction||Chapter 2: Background and Literature Review||Chapter 3: Multi-Processor System-on-Chip On-Borad Computer Design||Chapter 4: Space and Time Redundancy Trade-offs||Chapter 5: Radiation and Fault Injection Testing||Chapter 6: Thermal Vacuum Testing||Chapter 7: Results and Discussion||Chapter 8: Conclusion and Future Perspectives||ReferencesDeveloping small satellites for scientific and commercial purposes is emerging rapidly in the last decade. The future is still expected to carry more challenging services and designs to fulfill the growing needs for space based services. Nevertheless, there exists a big challenge in developing cost effective and highly efficient small satellites yet with accepted reliability and power consumption that is adequate to the mission capabilities. This challenge mandates the use of the recent developments in digital design techniques and technologies to strike the required balance between the four basic parameters: 1) Cost, 2) Performance, 3) Reliability and 4) Power consumption. This balance becomes even more stringent and harder to reach when the satellite mass reduces significantly. Mass reduction puts strict constraints on the power system in terms of the solar panels and the batteries. That fact creates the need to miniaturize the design of the subsystems as much as possible which can be viewed as the fifth parameter in the design balance dilemma. At Kyuhsu Institute of Technology-Japan we are investigating the use of SRAMbased Field Programmable Gate Arrays (FPGA) in building: 1) High performance, 2)Low cost, 3) Moderate power consumption and 4) Highly reliable Muti-Processor System-on-Chip (MPSoC) On-Board Computers (OBC) for future space missions and applications. This research tries to investigate how commercial grade SRAMbased FPGAs would perform in space and how to mitigate them against the space environment. Our methodology to answer that question depended on following formal design procedure for the OBC according to the space environment requirements then qualifying the design through extensive testing. We developed the MPSoC OBC with 4 complete embedded processor systems. The Inter Processor Communication (IPC) takes place through hardware First-In-First-Out (FIFO) mailboxes. One processor acts as the system master controller which monitors the operation and controls the reset and restore of the system in case of faults and the other three processors form Triple Modular Redundancy (TMR) fault tolerance architecture with each other. We used Dynamic Partial Reconfiguration (DPR) in scrubbing the configuration memory frames and correcting the faults that might exist. The system is implemented using a Virtex-5 LX50 commercial grade FPGA from Xilinx. The research also qualifies the design in the ground-simulated space environment conditions. We tested the implemented MPSoC OBC in Thermal Vacuum Chambers (TVC) at the Center of Nano-Satellite Testing (CeNT) at Kyushu Institute of Technology. Also we irradiated the design with proton accelerated beam at 65 MeV with fluxes of 10e06 and 3e06 particle/cm2/sec at the Takasaki Advanced Radiation Research Institute (TARRI). The TVC test results showed that the FPGA design exceeded the limits of normal operation for the commercial grade package at about 105 C°. Therefore, we mitigated the package using: 1) heat sink, 2) dynamic temperature management through operating frequency reduction from 100 MHz to 50 MHz and 3) reconfiguration to reduce the number of working processors to 2 instead of 4 by replacing the spaceredundancy TMR with time-redundancy TMR during the sunlight section of the orbit. The mitigation proved to be efficient and it even reduced the temperature from 105 C° to about 66 C° when the heat sink, frequency reduction, and reconfiguration techniques were used together. The radiation and the fault injection tests showed that mitigating the FPGA configuration frames through scrubbing are efficient when Single Bit Upsets (SBU) are recorded. Multiple Bit Upsets (MBU) are not well mitigated using the scrubbing with Single Error Correction Double Error Detection (SECDED) technique and the FPGA needs to be totally reset and reloaded when MBUs are detected in its configuration frames. However, as MBUs occurrence in space is very seldom and rare compared to SBUs, we consider that SECDED scrubbing is very efficient in decreasing the soft error rate and increasing the reliability of having error-free bitstreams. The reliability was proven to be at 0.9999 when the scrubbing rate was continuous at a period of 7.1 msec between complete scans of the FPGA bitstream. In the proton radiation tests we managed to develop a new technique to estimate the static cross section using internal scrubbing only without using external monitoring, control and scrubbing device. Fault injection was used to estimate the dynamic cross section in a cost effective alternative for estimating it through radiation test. The research proved through detailed testing that the 65 nm commercial grade SRAM-based FPGA can be used in future space missions. The MPSoC OBC design achieved an adequate balance between the performance, power, mass, and reliability requirements. Extensive testing and applying carefully crafted mitigation techniques were the key points to verify and validate the MPSoC OBC design. In-orbit validation through a scientific demonstration mission would be the next step for the future research
    corecore