1,996 research outputs found

    Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility

    Get PDF
    Selective Production of Exotic Species is an innovative plant for advanced nuclear physic studies. A radioactive beam, generated by using an UCx target-ion source system, is ionized, selected and accelerated for experimental objects. Very high vacuum conditions and appropriate safety systems to storage exhaust gases are required to avoid radiological risk for operators and people. In this paper, Failure Mode, Effects, and Criticality Analysis of a preliminary design of high activity gas recovery system is performed by using a modified Fuzzy Risk Priority Number to rank the most critical components in terms of failures and human errors. Comparisons between fuzzy approach and classic application allow to show that Fuzzy Risk Priority Number is able to enhance the focus of risk assessments and to improve the safety of complex and innovative systems such as those under consideration

    On advanced biofeedback and trapezius muscular activity during computer work

    Get PDF

    A Method for Recognizing Fatigue Driving Based on Dempster-Shafer Theory and Fuzzy Neural Network

    Get PDF
    This study proposes a method based on Dempster-Shafer theory (DST) and fuzzy neural network (FNN) to improve the reliability of recognizing fatigue driving. This method measures driving states using multifeature fusion. First, FNN is introduced to obtain the basic probability assignment (BPA) of each piece of evidence given the lack of a general solution to the definition of BPA function. Second, a modified algorithm that revises conflict evidence is proposed to reduce unreasonable fusion results when unreliable information exists. Finally, the recognition result is given according to the combination of revised evidence based on Dempster’s rule. Experiment results demonstrate that the recognition method proposed in this paper can obtain reasonable results with the combination of information given by multiple features. The proposed method can also effectively and accurately describe driving states

    Review and classification of variability analysis techniques with clinical applications

    Get PDF
    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis

    A Multi Views Approach for Remote Sensing Fusion Based on Spectral, Spatial and Temporal Information

    Get PDF
    The objectives of this chapter are to contribute to the apprehension of image fusion approaches including concepts definition, techniques ethics and results assessment. It is structured in five sections. Following this introduction, a definition of image fusion provides involved fundamental concepts. Respectively, we explain cases in which image fusion might be useful. Most existing techniques and architectures are reviewed and classified in the third section. In fourth section, we focuses heavily on algorithms based on multi-views approach, we compares and analyses the process model and algorithms including advantages, limitations and applicability of each view. The last part of the chapter summarized the benefits and limitations of a multi-view approach image fusion; it gives some recommendations on the effectiveness and the performance of these methods. These recommendations, based on a comprehensive study and meaningful quantitative metrics, evaluate various proposed views by applying them to various environmental applications with different remotely sensed images coming from different sensors. In the concluding section, we fence the chapter with a summary and recommendations for future researches

    A novel framework for predicting patients at risk of readmission

    Get PDF
    Uncertainty in decision-making for patients’ risk of re-admission arises due to non-uniform data and lack of knowledge in health system variables. The knowledge of the impact of risk factors will provide clinicians better decision-making and in reducing the number of patients admitted to the hospital. Traditional approaches are not capable to account for the uncertain nature of risk of hospital re-admissions. More problems arise due to large amount of uncertain information. Patients can be at high, medium or low risk of re-admission, and these strata have ill-defined boundaries. We believe that our model that adapts fuzzy regression method will start a novel approach to handle uncertain data, uncertain relationships between health system variables and the risk of re-admission. Because of nature of ill-defined boundaries of risk bands, this approach does allow the clinicians to target individuals at boundaries. Targeting individuals at boundaries and providing them proper care may provide some ability to move patients from high risk to low risk band. In developing this algorithm, we aimed to help potential users to assess the patients for various risk score thresholds and avoid readmission of high risk patients with proper interventions. A model for predicting patients at high risk of re-admission will enable interventions to be targeted before costs have been incurred and health status have deteriorated. A risk score cut off level would flag patients and result in net savings where intervention costs are much higher per patient. Preventing hospital re-admissions is important for patients, and our algorithm may also impact hospital income

    Empirical models, rules, and optimization

    Get PDF
    This paper considers supply decisions by firms in a dynamic setting with adjustment costs and compares the behavior of an optimal control model to that of a rule-based system which relaxes the assumption that agents are explicit optimizers. In our approach, the economic agent uses believably simple rules in coping with complex situations. We estimate rules using an artificially generated sample obtained by running repeated simulations of a dynamic optimal control model of a firm's hiring/firing decisions. We show that (i) agents using heuristics can behave as if they were seeking rationally to maximize their dynamic returns; (ii) the approach requires fewer behavioral assumptions relative to dynamic optimization and the assumptions made are based on economically intuitive theoretical results linking rule adoption to uncertainty; (iii) the approach delineates the domain of applicability of maximization hypotheses and describes the behavior of agents in situations of economic disequilibrium. The approach adopted uses concepts from fuzzy control theory. An agent, instead of optimizing, follows Fuzzy Associative Memory (FAM) rules which, given input and output data, can be estimated and used to approximate any non-linear dynamic process. Empirical results indicate that the fuzzy rule-based system performs extremely well in approximating optimal dynamic behavior in situations with limited noise.Decision-making. ,econometric models ,TMD ,

    Fear Classification using Affective Computing with Physiological Information and Smart-Wearables

    Get PDF
    Mención Internacional en el título de doctorAmong the 17 Sustainable Development Goals proposed within the 2030 Agenda and adopted by all of the United Nations member states, the fifth SDG is a call for action to effectively turn gender equality into a fundamental human right and an essential foundation for a better world. It includes the eradication of all types of violence against women. Focusing on the technological perspective, the range of available solutions intended to prevent this social problem is very limited. Moreover, most of the solutions are based on a panic button approach, leaving aside the usage and integration of current state-of-the-art technologies, such as the Internet of Things (IoT), affective computing, cyber-physical systems, and smart-sensors. Thus, the main purpose of this research is to provide new insight into the design and development of tools to prevent and combat Gender-based Violence risky situations and, even, aggressions, from a technological perspective, but without leaving aside the different sociological considerations directly related to the problem. To achieve such an objective, we rely on the application of affective computing from a realist point of view, i.e. targeting the generation of systems and tools capable of being implemented and used nowadays or within an achievable time-frame. This pragmatic vision is channelled through: 1) an exhaustive study of the existing technological tools and mechanisms oriented to the fight Gender-based Violence, 2) the proposal of a new smart-wearable system intended to deal with some of the current technological encountered limitations, 3) a novel fear-related emotion classification approach to disentangle the relation between emotions and physiology, and 4) the definition and release of a new multi-modal dataset for emotion recognition in women. Firstly, different fear classification systems using a reduced set of physiological signals are explored and designed. This is done by employing open datasets together with the combination of time, frequency and non-linear domain techniques. This design process is encompassed by trade-offs between both physiological considerations and embedded capabilities. The latter is of paramount importance due to the edge-computing focus of this research. Two results are highlighted in this first task, the designed fear classification system that employed the DEAP dataset data and achieved an AUC of 81.60% and a Gmean of 81.55% on average for a subjectindependent approach, and only two physiological signals; and the designed fear classification system that employed the MAHNOB dataset data achieving an AUC of 86.00% and a Gmean of 73.78% on average for a subject-independent approach, only three physiological signals, and a Leave-One-Subject-Out configuration. A detailed comparison with other emotion recognition systems proposed in the literature is presented, which proves that the obtained metrics are in line with the state-ofthe- art. Secondly, Bindi is presented. This is an end-to-end autonomous multimodal system leveraging affective IoT throughout auditory and physiological commercial off-theshelf smart-sensors, hierarchical multisensorial fusion, and secured server architecture to combat Gender-based Violence by automatically detecting risky situations based on a multimodal intelligence engine and then triggering a protection protocol. Specifically, this research is focused onto the hardware and software design of one of the two edge-computing devices within Bindi. This is a bracelet integrating three physiological sensors, actuators, power monitoring integrated chips, and a System- On-Chip with wireless capabilities. Within this context, different embedded design space explorations are presented: embedded filtering evaluation, online physiological signal quality assessment, feature extraction, and power consumption analysis. The reported results in all these processes are successfully validated and, for some of them, even compared against physiological standard measurement equipment. Amongst the different obtained results regarding the embedded design and implementation within the bracelet of Bindi, it should be highlighted that its low power consumption provides a battery life to be approximately 40 hours when using a 500 mAh battery. Finally, the particularities of our use case and the scarcity of open multimodal datasets dealing with emotional immersive technology, labelling methodology considering the gender perspective, balanced stimuli distribution regarding the target emotions, and recovery processes based on the physiological signals of the volunteers to quantify and isolate the emotional activation between stimuli, led us to the definition and elaboration of Women and Emotion Multi-modal Affective Computing (WEMAC) dataset. This is a multimodal dataset in which 104 women who never experienced Gender-based Violence that performed different emotion-related stimuli visualisations in a laboratory environment. The previous fear binary classification systems were improved and applied to this novel multimodal dataset. For instance, the proposed multimodal fear recognition system using this dataset reports up to 60.20% and 67.59% for ACC and F1-score, respectively. These values represent a competitive result in comparison with the state-of-the-art that deal with similar multi-modal use cases. In general, this PhD thesis has opened a new research line within the research group under which it has been developed. Moreover, this work has established a solid base from which to expand knowledge and continue research targeting the generation of both mechanisms to help vulnerable groups and socially oriented technology.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: David Atienza Alonso.- Secretaria: Susana Patón Álvarez.- Vocal: Eduardo de la Torre Arnan

    Symmetric and Asymmetric Data in Solution Models

    Get PDF
    This book is a Printed Edition of the Special Issue that covers research on symmetric and asymmetric data that occur in real-life problems. We invited authors to submit their theoretical or experimental research to present engineering and economic problem solution models that deal with symmetry or asymmetry of different data types. The Special Issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, seventeen papers were accepted and published. The authors proposed different solution models, mainly covering uncertain data in multicriteria decision-making (MCDM) problems as complex tools to balance the symmetry between goals, risks, and constraints to cope with the complicated problems in engineering or management. Therefore, we invite researchers interested in the topics to read the papers provided in the book
    corecore