220 research outputs found

    Limits and Capabilities of Cooperative Diversity: A Network and Protocol Perspective

    Get PDF
    Physical-layer cooperation has been demonstrated to vastly improve wireless link reliability and end-to-end throughput by exploiting spatial diversity. Nevertheless, its performance in operational networking environments is uncertain. Cooperative link gains can be potentially diminished by factors such as i) increased transmission footprint due to the activity of the cooperative relay, ii) non-ideal node location due to the structure of a planned network, or iii) the inability of cooperation protocols to recognize the channel's global state, hence leading to increased congestion. In this work, we identify and evaluate these key factors affecting the performance of cooperative techniques in small- and large-scale topologies. Our evaluation reveals that throughput gains from cooperation achieved in atomic, isolated topologies, decrease significantly when implemented at network-scale scenarios. Furthermore, our study provides a deeper understanding of the regimes in which cooperation performs poorly, and can help in the design of effective protocol solutions for such cases

    MANETs: Internet Connectivity and Transport Protocols

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected together over a wireless medium, which self-organize into an autonomous multi-hop wireless network. This kind of networks allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking is not a new concept, having been around in various forms for over 20 years. However, in the past only tactical networks followed the ad hoc networking paradigm. Recently, the introduction of new technologies such as IEEE 802.11, are moved the application field of MANETs to a more commercial field. These evolutions have been generating a renewed and growing interest in the research and development of MANETs. It is widely recognized that a prerequisite for the commercial penetration of the ad hoc networking technologies is the integration with existing wired/wireless infrastructure-based networks to provide an easy and transparent access to the Internet and its services. However, most of the existing solutions for enabling the interconnection between MANETs and the Internet are based on complex and inefficient mechanisms, as Mobile-IP and IP tunnelling. This thesis describes an alternative approach to build multi-hop and heterogeneous proactive ad hoc networks, which can be used as flexible and low-cost extensions of traditional wired LANs. The proposed architecture provides transparent global Internet connectivity and address autocofiguration capabilities to mobile nodes without requiring configuration changes in the pre-existing wired LAN, and relying on basic layer-2 functionalities. This thesis also includes an experimental evaluation of the proposed architecture and a comparison between this architecture with a well-known alternative NAT-based solution. The experimental outcomes confirm that the proposed technique ensures higher per-connection throughputs than the NAT-based solution. This thesis also examines the problems encountered by TCP over multi-hop ad hoc networks. Research on efficient transport protocols for ad hoc networks is one of the most active topics in the MANET community. Such a great interest is basically motivated by numerous observations showing that, in general, TCP is not able to efficiently deal with the unstable and very dynamic environment provided by multi-hop ad hoc networks. This is because some assumptions, in TCP design, are clearly inspired by the characteristics of wired networks dominant at the time when it was conceived. More specifically, TCP implicitly assumes that packet loss is almost always due to congestion phenomena causing buffer overflows at intermediate routers. Furthermore, it also assumes that nodes are static (i.e., they do not change their position over time). Unfortunately, these assumptions do not hold in MANETs, since in this kind of networks packet losses due to interference and link-layer contentions are largely predominant, and nodes may be mobile. The typical approach to solve these problems is patching TCP to fix its inefficiencies while preserving compatibility with the original protocol. This thesis explores a different approach. Specifically, this thesis presents a new transport protocol (TPA) designed from scratch, and address TCP interoperability at a late design stage. In this way, TPA can include all desired features in a neat and coherent way. This thesis also includes an experimental, as well as, a simulative evaluation of TPA, and a comparison between TCP and TPA performance (in terms of throughput, number of unnecessary transmissions and fairness). The presented analysis considers several of possible configurations of the protocols parameters, different routing protocols, and various networking scenarios. In all the cases taken into consideration TPA significantly outperforms TCP

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Cooperative communication in wireless networks: algorithms, protocols and systems

    Get PDF
    Current wireless network solutions are based on a link abstraction where a single co-channel transmitter transmits in any time duration. This model severely limits the performance that can be obtained from the network. Being inherently an extension of a wired network model, this model is also incapable of handling the unique challenges that arise in a wireless medium. The prevailing theme of this research is to explore wireless link abstractions that incorporate the broadcast and space-time varying nature of the wireless channel. Recently, a new paradigm for wireless networks which uses the idea of 'cooperative transmissions' (CT) has garnered significant attention. Unlike current approaches where a single transmitter transmits at a time in any channel, with CT, multiple transmitters transmit concurrently after appropriately encoding their transmissions. While the physical layer mechanisms for CT have been well studied, the higher layer applicability of CT has been relatively unexplored. In this work, we show that when wireless links use CT, several network performance metrics such as aggregate throughput, security and spatial reuse can be improved significantly compared to the current state of the art. In this context, our first contribution is Aegis, a framework for securing wireless networks against eavesdropping which uses CT with intelligent scheduling and coding in Wireless Local Area networks. The second contribution is Symbiotic Coding, an approach to encode information such that successful reception is possible even upon collisions. The third contribution is Proteus, a routing protocol that improves aggregate throughput in multi-hop networks by leveraging CT to adapt the rate and range of links in a flow. Finally, we also explore the practical aspects of realizing CT using real systems.PhDCommittee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Ingram, Mary Ann; Committee Member: Jayant, Nikil; Committee Member: Riley, Georg

    Centralized Rate Allocation and Control in 802.11-based Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) built with commodity 802.11 radios are a cost-effective means of providing last mile broadband Internet access. Their multihop architecture allows for rapid deployment and organic growth of these networks. 802.11 radios are an important building block in WMNs. These low cost radios are readily available, and can be used globally in license-exempt frequency bands. However, the 802.11 Distributed Coordination Function (DCF) medium access mechanism does not scale well in large multihop networks. This produces suboptimal behavior in many transport protocols, including TCP, the dominant transport protocol in the Internet. In particular, cross-layer interaction between DCF and TCP results in flow level unfairness, including starvation, with backlogged traffic sources. Solutions found in the literature propose distributed source rate control algorithms to alleviate this problem. However, this requires MAC-layer or transport-layer changes on all mesh routers. This is often infeasible in practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We evaluate the feasibility of establishing similar centralized control via gateway mesh routers in WMNs. We find that commonly used router-assisted flow control schemes designed for wired networks fail in WMNs. This is because they assume that: (1) links can be scheduled independently, and (2) router queue buildups are sufficient for detecting congestion. These abstractions do not hold in a wireless network, rendering wired scheduling algorithms such as Fair Queueing (and its variants) and Active Queue Management (AQM) techniques ineffective as a gateway-enforceable solution in a WMN. We show that only non-work-conserving rate-based scheduling can effectively enforce rate allocation via a single centralized traffic-aggregation point. In this context we propose, design, and evaluate a framework of centralized, measurement-based, feedback-driven mechanisms that can enforce a rate allocation policy objective for adaptive traffic streams in a WMN. In this dissertation we focus on fair rate allocation requirements. Our approach does not require any changes to individual mesh routers. Further, it uses existing data traffic as capacity probes, thus incurring a zero control traffic overhead. We propose two mechanisms based on this approach: aggregate rate control (ARC) and per-flow rate control (PFRC). ARC limits the aggregate capacity of a network to the sum of fair rates for a given set of flows. We show that the resulting rate allocation achieved by DCF is approximately max-min fair. PFRC allows us to exercise finer-grained control over the rate allocation process. We show how it can be used to achieve weighted flow rate fairness. We evaluate the performance of these mechanisms using simulations as well as implementation on a multihop wireless testbed. Our comparative analysis show that our mechanisms improve fairness indices by a factor of 2 to 3 when compared with networks without any rate limiting, and are approximately equivalent to results achieved with distributed source rate limiting mechanisms that require software modifications on all mesh routers

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%
    • ā€¦
    corecore