1,590 research outputs found

    Planning and Scheduling Transportation Vehicle Fleet in a Congested Traffic Environment

    Get PDF
    Transportation is a main component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routing is a crucial management problem. Despite numerous publications dealing with efficient scheduling methods for vehicle routing, very few addressed the inherent stochastic nature of travel times in this problem. In this paper, a vehicle routing problem with time windows and stochastic travel times due to potential traffic congestion is considered. The approach developed introduces mainly the traffic congestion component based on queueing theory. This is an innovative modeling scheme to capture the stochastic behavior of travel times. A case study is used both to illustrate the appropriateness of the approach as well as to show that time-independent solutions are often unrealistic within a congested traffic environment which is often the case on the european road networkstransportation; vehicle fleet; planning; scheduling; congested traffic

    Ant colony optimization approach for the capacitated vehicle routing problem with simultaneous delivery and pick-up

    Get PDF
    We propose an Ant Colony Optimization (ACO) algorithm to the NPhard Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP). In VRPSDP, commodities are delivered to customers from a single depot utilizing a fleet of identical vehicles and empty packages are collected from the customers and transported back to the depot. The objective is to minimize the total distance traveled. The algorithm is tested with the well-known benchmark problems from the literature. The experimental study indicates that our approach produces comparable results to those of the benchmark problems in the literature

    Un modelo para resolver el problema dinámico de despacho de vehículos con incertidumbre de clientes y con tiempos de viaje en arcos

    Get PDF
    Indexación: Web of Science; ScieloIn a real world case scenario, customer demands are requested at any time of the day requiring services that are not known in advance such as delivery or repairing equipment. This is called Dynamic Vehicle Routing (DVR) with customer uncertainty environment. The link travel time for the roadway network varies with time as traffic fluctuates adding an additional component to the dynamic environment. This paper presents a model for solving the DVR problem while combining these two dynamic aspects (customer uncertainty and link travel time). The proposed model employs Greedy, Insertion, and Ant Colony Optimization algorithms. The Greedy algorithm is utilized for constructing new routes with existing customers, and the remaining two algorithms are employed for rerouting as new customer demands appear. A real world application is presented to simulate vehicle routing in a dynamic environment for the city of Taipei, Taiwan. The simulation shows that the model can successfully plan vehicle routes to satisfy all customer demands and help managers in the decision making process.En un escenario real, los pedidos de los clientes son solicitados a cualquier hora del día requiriendo servicios que no han sido planificados con antelación tales como los despachos o la reparación de equipos. Esto es llamado ruteo dinámico de vehículos (RDV) considerando un ambiente con incertidumbre de clientes. El tiempo de viaje en una red vial varía con el tiempo a medida que el tráfico vehicular fluctúa agregando una componente adicional al ambiente dinámico. Este artículo propone un modelo para resolver el problema RDV combinando estos dos aspectos dinámicos. El modelo propuesto utiliza los algoritmos Greedy, Inserción y optimización basada en colonias de hormigas. El algoritmo Greedy es utilizado para construir nuevas rutas con los clientes existentes y los otros dos algoritmos son usados para rutear vehículos a medida que surjan nuevos clientes con sus respectivos pedidos. Además, se presenta una aplicación real para simular el ruteo vehicular en un ambiente dinámico para la ciudad de Taipei, Taiwán. Esta simulación muestra que el modelo es capaz de planificar exitosamente las rutas vehiculares satisfaciendo los pedidos de los clientes y de ayudar los gerentes en el proceso de toma de decisiones.http://ref.scielo.org/3ryfh

    An ant colony algorithm for the mixed vehicle routing problem with backhauls

    Get PDF
    The Vehicle Routing Problem with Pickup and Delivery (VRPPD) is a variant of the Vehicle Routing Problem where the vehicles are not only required to deliver goods but also to pick up some goods from the customers. The Mixed Vehicle Routing Problem with Backhauls (MVRPB) is a special case of VRPPD where each customer has either a delivery or a pickup demand to be satisfied and the customers can be visited in any order along the route. Given a fleet of vehicles and a set of customers with known pickup or delivery demands MVRPB determines a set of vehicle routes originating and ending at a single depot and visiting all customers exactly once. The objective is to minimize the total distance traversed with the least number of vehicles. For this problem, we propose an Ant Colony Optimization algorithm with a new visibility function which attempts to capture the “delivery” and “pickup” nature of the problem. Our numerical tests to compare the performance of the proposed approach with those of the well-known benchmark problems reveal that the proposed approach provides encouraging results

    Multiple depots vehicle routing based on the ant colony with the genetic algorithm

    Get PDF
    Purpose: the distribution routing plans of multi-depots vehicle scheduling problem will increase exponentially along with the adding of customers. So, it becomes an important studying trend to solve the vehicle scheduling problem with heuristic algorithm. On the basis of building the model of multi-depots vehicle scheduling problem, in order to improve the efficiency of the multiple depots vehicle routing, the paper puts forward a fusion algorithm on multiple depots vehicle routing based on the ant colony algorithm with genetic algorithm. Design/methodology/approach: to achieve this objective, the genetic algorithm optimizes the parameters of the ant colony algorithm. The fusion algorithm on multiple depots vehicle based on the ant colony algorithm with genetic algorithm is proposed. Findings: simulation experiment indicates that the result of the fusion algorithm is more excellent than the other algorithm, and the improved algorithm has better convergence effective and global ability. Research limitations/implications: in this research, there are some assumption that might affect the accuracy of the model such as the pheromone volatile factor, heuristic factor in each period, and the selected multiple depots. These assumptions can be relaxed in future work. Originality/value: In this research, a new method for the multiple depots vehicle routing is proposed. The fusion algorithm eliminate the influence of the selected parameter by optimizing the heuristic factor, evaporation factor, initial pheromone distribute, and have the strong global searching ability. The Ant Colony algorithm imports cross operator and mutation operator for operating the first best solution and the second best solution in every iteration, and reserves the best solution. The cross and mutation operator extend the solution space and improve the convergence effective and the global ability. This research shows that considering both the ant colony and genetic algorithm together can improve the efficiency multiple depots vehicle routing.Peer Reviewe

    Ant colony optimization and its application to the vehicle routing problem with pickups and deliveries

    Get PDF
    Ant Colony Optimization (ACO) is a population-based metaheuristic that can be used to find approximate solutions to difficult optimization problems. It was first introduced for solving the Traveling Salesperson Problem. Since then many implementations of ACO have been proposed for a variety of combinatorial optimization. In this chapter, ACO is applied to the Vehicle Routing Problem with Pickup and Delivery (VRPPD). VRPPD determines a set of vehicle routes originating and ending at a single depot and visiting all customers exactly once. The vehicles are not only required to deliver goods but also to pick up some goods from the customers. The objective is to minimize the total distance traversed. The chapter first provides an overview of ACO approach and presents several implementations to various combinatorial optimization problems. Next, VRPPD is described and the related literature is reviewed, Then, an ACO approach for VRPPD is discussed. The approach proposes a new visibility function which attempts to capture the “delivery” and “pickup” nature of the problem. The performance of the approach is tested using well-known benchmark problems from the literature

    Routing design for less-than-truckload motor carriers using ant colony techniques

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results

    Tackling Dynamic Vehicle Routing Problem with Time Windows by means of Ant Colony System

    Full text link
    The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) is an extension of the well-known Vehicle Routing Problem (VRP), which takes into account the dynamic nature of the problem. This aspect requires the vehicle routes to be updated in an ongoing manner as new customer requests arrive in the system and must be incorporated into an evolving schedule during the working day. Besides the vehicle capacity constraint involved in the classical VRP, DVRPTW considers in addition time windows, which are able to better capture real-world situations. Despite this, so far, few studies have focused on tackling this problem of greater practical importance. To this end, this study devises for the resolution of DVRPTW, an ant colony optimization based algorithm, which resorts to a joint solution construction mechanism, able to construct in parallel the vehicle routes. This method is coupled with a local search procedure, aimed to further improve the solutions built by ants, and with an insertion heuristics, which tries to reduce the number of vehicles used to service the available customers. The experiments indicate that the proposed algorithm is competitive and effective, and on DVRPTW instances with a higher dynamicity level, it is able to yield better results compared to existing ant-based approaches.Comment: 10 pages, 2 figure
    corecore