374 research outputs found

    Reducing Message Collisions in Sensing-based Semi-Persistent Scheduling (SPS) by Using Reselection Lookaheads in Cellular V2X

    Full text link
    In the C-V2X sidelink Mode 4 communication, the sensing-based semi-persistent scheduling (SPS) implements a message collision avoidance algorithm to cope with the undesirable effects of wireless channel congestion. Still, the current standard mechanism produces high number of packet collisions, which may hinder the high-reliability communications required in future C-V2X applications such as autonomous driving. In this paper, we show that by drastically reducing the uncertainties in the choice of the resource to use for SPS, we can significantly reduce the message collisions in the C-V2X sidelink Mode 4. Specifically, we propose the use of the "lookahead," which contains the next starting resource location in the time-frequency plane. By exchanging the lookahead information piggybacked on the periodic safety message, vehicular user equipments (UEs) can eliminate most message collisions arising from the ignorance of other UEs' internal decisions. Although the proposed scheme would require the inclusion of the lookahead in the control part of the packet, the benefit may outweigh the bandwidth cost, considering the stringent reliability requirement in future C-V2X applications.Comment: Submitted to MDPI Sensor

    Sub-6GHz Assisted MAC for Millimeter Wave Vehicular Communications

    Get PDF
    Sub-6GHz vehicular communications (using DSRC, ITS-G5 or C-V2X) have been developed to support active safety applications. Future connected and automated driving applications can require larger bandwidth and higher data rates than currently supported by sub-6GHz V2X technologies. This has triggered the interest in developing mmWave vehicular communications. However, solutions are necessary to solve the challenges resulting from the use of high-frequency bands and the high mobility of vehicles. This paper contributes to this active research area by proposing a sub-6GHz assisted mmWave MAC that decouples the mmWave data and control planes. The proposal offloads mmWave MAC control functions (beam alignment, neighbor identification and scheduling) to a sub-6GHz V2X technology, and reserves the mmWave channel for the data plane. This approach improves the operation of the MAC as the control functions benefit from the longer range, and the broadcast and omnidirectional transmissions of sub-6GHz V2X technologies. This simulation study demonstrates that the proposed sub-6GHz assisted mmWave MAC reduces the control overhead and delay, and increases the spatial sharing compared to a mmWave-only configuration (IEEE 802.11ad tailored to vehicular networks). The proposed MAC is here evaluated for V2V communications using 802.11p for the control plane and 802.11ad for the data plane. However, the proposal is not restricted to these technologies, and can be adapted to other technologies such as C-V2X and 5G NR.Comment: 8 pages, 5 figure

    DSRC Versus LTE-V2X: Empirical Performance Analysis of Direct Vehicular Communication Technologies

    Get PDF
    Vehicle-to-Vehicle (V2V) communication systems have an eminence potential to improve road safety and optimize traffic flow by broadcasting Basic Safety Messages (BSMs). Dedicated Short-Range Communication (DSRC) and LTE Vehicle-to-Everything (V2X) are two candidate technologies to enable V2V communication. DSRC relies on the IEEE 802.11p standard for its PHY and MAC layer while LTE-V2X is based on 3GPP’s Release 14 and operates in a distributed manner in the absence of cellular infrastructure. There has been considerable debate over the relative advantages and disadvantages of DSRC and LTE-V2X, aiming to answer the fundamental question of which technology is most effective in real-world scenarios for various road safety and traffic efficiency applications. In this paper, we present a comprehensive survey of these two technologies (i.e., DSRC and LTE-V2X) and related works. More specifically, we study the PHY and MAC layer of both technologies in the survey study and compare the PHY layer performance using a variety of field tests. First, we provide a summary of each technology and highlight the limitations of each in supporting V2X applications. Then, we examine their performance based on different metrics

    Internet of Vehicles Based On Cellular-Vehicle-To-Everything (C-V2X)

    Get PDF
    In line with the development of automotive and traffic systems, high mobility and density in different road topologies cause scalability and delay issues due to frequent disconnection between communication nodes. From a safety aspect, Cellular-V2X (C-V2X) wireless technology was introduced by the Third Generation Partnership Project Organization (3GPP) to realise the transmission of emergency messages at critical times, anywhere. Specifically, Mode 4 C-V2X supports side-link communication without relying on a base station to provide network coverage. However, Mode 4 is susceptible to several limitations, which include half-duplex transmission, packet collision, and propagation errors that will cause intermittent connectivity issues. It is also difficult to determine appropriate parameter configurations that can increase the spectrum efficiency of dense networks to facilitate reliable and low-latency networks. The objective of this paper is to investigate the effectiveness of a Mode 4 C-V2X system under different road topologies and traffic scenarios. The study adopts a Krauss vehicular mobility model based on SUMO software to model normal and dense networks in a highway and a road intersection scenario, then perform simulation using OMNET++ software to analyse the impact of different physical layer (PHY) configurations such as modulation and coding scheme, packet size, number of resource block allocation, as well as the probability of resource reservation. The results show that the optimal configuration of parameters depends on the scenario. For highway scenarios, a lower MCS and a higher number of RBs are recommended. For road intersection scenarios, a higher MCS and a lower number of RBs are recommended. The packet size should also be in accordance with the requirements of the application used. The findings of this study can be used to assist in the design of an optimal intelligent transportation system using adaptive C-V2X parameters that can be automatically adjusted under different scenarios and network conditions
    • …
    corecore