1,904 research outputs found

    Modeling Cutting Force in Micro-Milling of Ti-6Al-4V Titanium Alloy

    Get PDF
    AbstractThis work presents a finite element method (FEM) based micro-end milling cutting force modeling of Ti-6Al-4V titanium alloy microchannels. Ti-6Al-4V is one of the widely acceptable titanium based alloys for medical as well as aerospace applications due to its advantageous properties like; corrosion resistance, larger strength to weight ratio, non-toxic nature and bio-compatibility. Johnson-Cook constitutive equation is used for the FEM model with due consideration of effects of strain, strain rate and temperature on the material property and failure parameters considered as the chip separation criterion. Simulation of stress distribution, temperature distribution and cutting forces prediction during micro-end milling of Ti-6Al-4V alloy is performed by ABAQUS/Explicit 6.12 software with incorporation of tool edge radius effect, which is more common in downscaling of the process. Predicted cutting forces model results are validated by conducting micro-end milling experiments. The trend of the predicted cutting forces results shows in good agreement with experimental results

    Study of orifice fabrication technologies for the liquid droplet radiator

    Get PDF
    Eleven orifice fabrication technologies potentially applicable for a liquid droplet radiator are discussed. The evaluation is focused on technologies capable of yielding 25-150 microns diameter orifices with trajectory accuracies below 5 milliradians, ultimately in arrays of up to 4000 orifices. An initial analytical screening considering factors such as trajectory accuracy, manufacturability, and hydrodynamics of orifice flow is presented. Based on this screening, four technologies were selected for experimental evaluation. A jet straightness system used to test 50-orifice arrays made by electro-discharge machining (EDM), Fotoceram, and mechanical drilling is discussed. Measurements on orifice diameter control and jet trajectory accuracy are presented and discussed. Trajectory standard deviations are in the 4.6-10.0 milliradian range. Electroforming and EDM appear to have the greatest potential for Liquid Droplet Radiator applications. The direction of a future development effort is discussed

    Micromachining

    Get PDF
    To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic

    Role of Heat Transfer on Process Characteristics During Electrical Discharge Machining

    Get PDF
    This book comprises heat transfer fundamental concepts and modes (specifically conduction, convection and radiation), bioheat, entransy theory development, micro heat transfer, high temperature applications, turbulent shear flows, mass transfer, heat pipes, design optimization, medical therapies, fiber-optics, heat transfer in surfactant solutions, landmine detection, heat exchangers, radiant floor, packed bed thermal storage systems, inverse space marching method, heat transfer in short slot ducts, freezing an drying mechanisms, variable property effects in heat transfer, heat transfer in electronics and process industries, fission-track thermochronology, combustion, heat transfer in liquid metal flows, human comfort in underground mining, heat transfer on electrical discharge machining and mixing convection. The experimental and theoretical investigations, assessment and enhancement techniques illustrated here aspire to be useful for many researchers, scientists, engineers and graduate students

    Investigation into micro machinability of Mg based metal matrix compostites (MMCs) reinforced with nanoparticles

    Get PDF
    PhD ThesisAs composite materials with combination of low weight and high engineering strength, traditional metal matrix composites (MMCs) with micro-sized reinforcement (micro-MMCs) have been utilized in numerous area such as aerospace, automobile, medical and advanced weapon systems in the past two decades. With the development of composite materials, metal matrix composites reinforced with small volume fraction of nano-sized reinforcements (nanoMMCs) exhibits an equivalent and even better properties than that reinforced with large volume of micro-sized reinforcement and thus receive increasing attention from academia and industries. MMCs components are typically fabricated in near net shape process such as casting. But micro machining processes are indispensable in order to meet the increasing demands on the component with high dimensional accuracy and complex shapes. However, the enhanced mechanical properties of MMCs and tool-like hardness of reinforced particles bring challenges to machining process. The deteriorative machined surface finish and excessive tool wear have been recognised as the main obstacles during machining of MMCs due to their heterogeneous and abrasive nature. In this research, the detailed material removal mechanism of nano-MMCs in terms of micro machinability, micro tool wear and simulated material removal process with finite element analysis (FEA) is investigated. The systematic experimental studies on micro machining mechanism of magnesium-based MMCs reinforced with nanoparticles (Ti, TiB2, BN, ZnO) are conducted. The cutting force, burr formation, surface roughness and morphology are characterised to investigate the micro machinability under the effect of various machining parameters, particle volume fraction and matrix/reinforcement materials using design of experiment (DoE) and analysis of variance (ANVOA) methods. The micro structure changes of Mg-MMCs by addition of nanoparticles were taken into account. In addition, surface morphology and the minimum chip thickness is obtained and characterised with the aim of examining the specific cutting energy. A comprehensive investigation of tool wear mechanisms in the micro milling of Mg-MMCs is conducted. The tool wear is characterised both quantitatively and qualitatively by observing tool wear patterns and analysing the effect of cutting parameters and tool coating on average flank wear, reduction in tool diameter, cutting forces, surface roughness, and burr formation. The main wear mechanisms at different machining conditions are determined. Finally, the tool wear phenomenon observed from experiments is explained by simulating the tool-particles interaction using finite element modelling, and hence new wear mechanisms are proposed for machining nano-MMCs. iv The two dimensional micromechanical finite element (FE) models are established to study the material removal mechanism of MMCs reinforced with micro-sized and nanoparticles in micro machining process with consideration of size effect. Two phases, namely particle and matrix are modelled in FE cutting models. Particle fracture properties are involved in micro-sized particles to study the fracture behaviours. The cutting force, tool-particles interaction, particle fracture behaviours, stress/strain distribution, chip formation process and surface morphology are investigated in the FE models. The surface defect generation mechanism is studied in details by developing the additional three dimensional (3D) FE models in machining micro-MMCs. Moreover, the cutting mechanism comparison between machining nano-MMCs and microMMCs is conducted to investigate the effect of significant particle size reduction from micro to nano-scale. The model validation is carried out by studying the chip morphology, cutting force, surface morphology obtained from machining experiments and good agreements are found with the simulation results

    Machining and grinding of ultrahigh-strength steels and stainless steel alloys

    Get PDF
    Machining and grinding of ultrahigh-strength steels and stainless steel alloy

    Temperature effects on DLC coated micro moulds

    Get PDF
    Microinjection moulding is a key enabling technology for replicating miniaturized components and parts with functional features at the micrometer and even sub-micrometer length scale. The micro moulding tools used in the process chain are critical for delivering high quality parts for the duration of the product life cycle, and recently tool coatings such as Diamond-like carbon (DLC) have been used to extend their use and enhance the performance. The micro injection moulding process has high injection speeds with cyclic heat transfer characteristics, and little is understood on how the localised heat transfer at the surface will influence the DLC surface coating delamination and cracking. In this research a microinjection moulding process using three different polymers, Polypropylene (PP), Acrylonitrile butadiene styrene (ABS) and Polyether ether ketone (PEEK) is studied. Finite element analysis (FEA) simulation is utilised to identify the process temperature factors that lead to tool thermal expansion and dimensional changes that directly impact the life cycle of the coating. The theoretical and FEA results show that the mould material and the two coatings experience a significantly different thermal expansion from each other. It has also been shown that at the micro scale heat loss at the tool surface is dominant, and the variation in heat has a significant influence on the different thermal expansion rates. In particular the DLC coated micro rib features are particularly susceptible to high variations in heat transfer. The research identifies areas of the tool surface that experience sudden heat variation across the part surface, and concludes that through process optimisation it is possible to reduce the potential for DLC coating delamination and cracking during service

    Micro-EDM Process for Tool-based Compound Micromachining

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Modeling of Tool Wear and Tool Fracture in Micromilling

    Get PDF
    Micromachining is the next generation of precision material removal at the micro scale level due to the increase in miniaturization of commercial products. The applications of this technology extend anywhere from electronics to micro scale medical implants. Micromilling has the potential to be the most cost effective and efficient material removal process due to ease of use and accessibility of the tools. This research analyzes vibration of a high speed spindle and then studies micromilling of aluminum and titanium. Finite element analysis and tool modeling compliment experimental data. Cumulative tool wear based on Taylor model shows decreasing tool life with increasing feed rate and increasing cutting speed on aluminum. Inconsistent results are seen when micromilling titanium due to premature chipping of tool noses. A significant nose wear plastically deforms a micromilled subsurface and is verified with microstructure study and microhardness measurements
    corecore