24,008 research outputs found

    Modeling and supervisory control design for a combined cycle power plant

    Get PDF
    The traditional control strategy based on PID controllers may be unsatisfactory when dealing with processes with large time delay and constraints. This paper presents a supervisory model based constrained predictive controller (MPC) for a combined cycle power plant (CCPP). First, a non-linear dynamic model of CCPP using the laws of physics was proposed. Then, the supervisory control using the linear constrained MPC method was designed to tune the performance of the PID controllers by including output constraints and manipulating the set points. This scheme showed excellent tracking and disturbance rejection results and improved performance compared with a stand-alone PID controller’s scheme

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    New offset-free method for model predictive control of open channels

    Get PDF
    Irrigation or drainage canals can be controlled by model predictive control (MPC). Applying MPC with an internal model in the presence of unknown disturbances in some cases can lead to steady state offset. Therefore an additional component should be implemented along with the MPC. A new method eliminating the offset has been developed in this paper for MPC. It is based on combining two basic approaches of MPC. It has been implemented to control water levels in the three-pool UPC laboratory canal and further numerically tested using a test case benchmark proposed by the American Society of Civil Engineers (ASCE). It has been found that the developed offset-free method is able to eliminate the steady-state offset, while taking into account known and unknown disturbances.Peer ReviewedPostprint (author's final draft

    Analysis and Application of Advanced Control Strategies to a Heating Element Nonlinear Model

    Get PDF
    open4siSustainable control has begun to stimulate research and development in a wide range of industrial communities particularly for systems that demand a high degree of reliability and availability (sustainability) and at the same time characterised by expensive and/or safety critical maintenance work. For heating systems such as HVAC plants, clear conflict exists between ensuring a high degree of availability and reducing costly maintenance times. HVAC systems have highly non-linear dynamics and a stochastic and uncontrollable driving force as input in the form of intake air speed, presenting an interesting challenge for modern control methods. Suitable control methods can provide sustainable maximisation of energy conversion efficiency over wider than normally expected air speeds and temperatures, whilst also giving a degree of “tolerance” to certain faults, providing an important impact on maintenance scheduling, e.g. by capturing the effects of some system faults before they become serious.This paper presents the design of different control strategies applied to a heating element nonlinear model. The description of this heating element was obtained exploiting a data driven and physically meaningful nonlinear continuous time model, which represents a test bed used in passive air conditioning for sustainable housing applications. This model has low complexity while achieving high simulation performance. The physical meaningfulness of the model provides an enhanced insight into the performance and functionality of the system. In return, this information can be used during the system simulation and improved model based and data driven control designs for tight temperature regulation. The main purpose of this study is thus to give several examples of viable and practical designs of control schemes with application to this heating element model. Moreover, extensive simulations and Monte Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared in order to evaluate advantages and drawbacks of the considered solutions. Finally, the exploited simulation tools can serve to highlight the potential application of the proposed control strategies to real air conditioning systems.openTurhan, T.; Simani, S.; Zajic, I.; Gokcen Akkurt, G.Turhan, T.; Simani, Silvio; Zajic, I.; Gokcen Akkurt, G

    Performance Analysis of Model Predictive Control For Distillation Column

    Get PDF
    Model predictive control is an advanced process control method. It is a popular technique in chemical plants and oil refineries. Model predictive controller depends on dynamic model of the process and predicts the future output and so that the present input is optimized to avoid the future error. An optimization problem is solved over a prediction horizon P by regulating M control moves .Dynamic matrix control is a popular MPC method and it relies on the state space model of the plant. In this work, first we represent the DMC as an LTI system. The effect of tuning parameter on both first order and second order system is observed by calculating transient parameters like settling time, rise time, peak over shoot. Then the close loop poles are calculated for a specific FOPDT by varying different tuning parameters using the DMC algorithm. From the observation, effect of tuning parameters like P, M, w, N are summarized and a design rule for the parameter adjustment of DMC is proposed. Next a brief study on distillation column is provided and a mathematical model is also discussed. The design rule and control strategy of distillation column are discussed. The control of a distillation column by PID controller is performed for different tuning methods. In order to get stable response decoupling technique is used. Two different techniques like inverted and simplified decoupling are performed and a comparison between them is given by calculating transient parameters. The control of a distillation column by the MPC is also performed. A comparison between two controllers (PID and MPC) is discussed. The features of MPC like constraint handling, disturbance rejection, set point tracking is observed. Here different distillation process is taken and its response after using an MPC controller is observed. MATLAB (matrix laboratory) provides a numerical environment and fourth generation programming language. It provides matrix manipulation, plotting of function, data and implementation of algorithms. It provides a different tool box and Simulink models for process control and design.Model predictive control tool box provides functions, Simulink block for analysing, designing and simulating model predictive control. Here user can provide control and prediction horizon, weighting factor and model length. The toolbox can guide the user regarding tuning parameters and it also facilitates softening of constraints

    Multivariable predictive PID control for quadruple tank

    Get PDF
    In this paper multivariable predictive PID controller has been implemented on a multi-inputs multi-outputs control problem i.e., quadruple tank system, in comparison with a simple multiloop PI controller. One of the salient feature of this system is an adjustable transmission zero which can be adjust to operate in both minimum and non-minimum phase configuration, through the flow distribution to upper and lower tanks in quadruple tank system. Stability and performance analysis has also been carried out for this highly interactive two input two output system, both in minimum and non-minimum phases. Simulations of control system revealed that better performance are obtained in predictive PID design

    Analytical results for the multi-objective design of model-predictive control

    Full text link
    In model-predictive control (MPC), achieving the best closed-loop performance under a given computational resource is the underlying design consideration. This paper analyzes the MPC design problem with control performance and required computational resource as competing design objectives. The proposed multi-objective design of MPC (MOD-MPC) approach extends current methods that treat control performance and the computational resource separately -- often with the latter as a fixed constraint -- which requires the implementation hardware to be known a priori. The proposed approach focuses on the tuning of structural MPC parameters, namely sampling time and prediction horizon length, to produce a set of optimal choices available to the practitioner. The posed design problem is then analyzed to reveal key properties, including smoothness of the design objectives and parameter bounds, and establish certain validated guarantees. Founded on these properties, necessary and sufficient conditions for an effective and efficient solver are presented, leading to a specialized multi-objective optimizer for the MOD-MPC being proposed. Finally, two real-world control problems are used to illustrate the results of the design approach and importance of the developed conditions for an effective solver of the MOD-MPC problem

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    A data-based approach for multivariate model predictive control performance monitoring

    No full text
    An intelligent statistical approach is proposed for monitoring the performance of multivariate model predictive control (MPC) controller, which systematically integrates both the assessment and diagnosis procedures. Model predictive error is included into the monitored variable set and a 2-norm based covariance benchmark is presented. By comparing the data of a monitored operational period with the "golden" user-predefined one, this method can properly evaluate the performance of an MPC controller at the monitored operational stage. Characteristic direction information is mined from the operating data and the corresponding classes are built. The eigenvector angle is defined to describe the similarity between the current data set and the established classes, and an angle-based classifier is introduced to identify the root cause of MPC performance degradation when a poor performance is detected. The effectiveness of the proposed methodology is demonstrated in a case study of the Wood–Berry distillation column system
    corecore