1,504 research outputs found

    Model Identification And Controller Design For An Electro-Pneumatic Actuator System With Dead Zone Compensation

    Get PDF
    Pneumatic actuator system is inexpensive, high power to weight ratio, cleanliness and ease of maintenance make it’s a choice compared to hydraulic actuator and electromagnetic actuator. Nonetheless, the steady state error of the system is high due to the dead zone of the valve. In this paper, an Auto-Regressive with External Input (ARX) model structure is chosen to represent the pneumatic actuator system. The recursive least square method is used to estimate the model parameters. The pole-assignment controller is then developed for position tracking. To cater the problem of high in steady state error, the dead zone compensation is added to the system. The dead zone controller was designed based on the inverse dead zone model and the dead zone compensation designed based on the desired error. The proposed method is then experimentally with varies load and compares with Nonlinear PID controller. The result shows that the proposed controller reduced the overshoot and steady state error of the pneumatic actuator system to no overshoot and 0.025mm respectively. Index terms: System identification, recursive least square, ARX, dead zone compensator, pneumatic actuato

    Reconfigurable Flight Control Designs With Application to the X-33 Vehicle

    Get PDF
    Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the right body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases

    Vibrational control of air suspension system using PID controller

    Get PDF
    This paper deals with modeling and evaluation of suspension system with a pneumatic actuator controlled by Proportional Integral Derivative (PID) controller. A non-linear mathematical model of the dynamic suspension system with two degrees of freedom is developed. The controller is designed by setting proper gain values obtained by comparing three tuning methods - Ziegler Nicolas, Refined Ziegler Nicolas and Optimal control. The time response of the air suspension system is contrasted with the passive suspension system due to the road disturbance modeled as a single bump input. The proposed model limits suspension travel, minimizes passenger acceleration and keeps body displacement within bound

    Nonlinear position and stiffness Backstepping controller for a two Degrees of Freedom pneumatic robot

    Get PDF
    This paper presents an architecture of a 2 Degrees of Freedom pneumatic robot which can be used as a haptic interface. To improve the haptic rendering of this device, a nonlinear position and stiffness controller without force measurement based on a Backstepping synthesis is presented. Thus, the robot can follow a targeted trajectory in Cartesian position with a variable compliant behavior when disturbance forces are applied. An appropriate tuning methodology of the closed-loop stiffness and closed-loop damping of the robot is given to obtain a desired disturbance response. The models, the synthesis and the stability analysis of this controller are described in this paper. Two models are presented in this paper, the first one is an accurate simulation model which describes the mechanical behavior of the robot, the thermodynamics phenomena in the pneumatic actuators, and the servovalves characteristics. The second model is the model used to synthesize the controller. This control model is obtained by simplifying the simulation model to obtain a MIMO strict feedback form. Finally, some simulation and experimental results are given and the controller performances are discussed and compared with a classical linear impedance controller

    Pressure-based Impedance Control of A Pneumatic Actuator

    Get PDF
    In this thesis, three control methods are developed for the impedance control of a linear pneumatic actuator for contact tasks using discrete valves. Linear pneumatic actuators, particularly with discrete valves, utilize compressed air to produce linear motion. It is a low cost and clean system with straightforward implementation compared to other actuators. Impedance control is applied to the pneumatic actuator to regulate not only force and position, but also the relationship between them. Specifically, the impedance control yields a desired air pressure based on the actual and desired positions, velocity, and force of a pneumatic cylinder to drive the dynamics of the actuator system. Three controllers including Active Disturbance Rejection Control (ADRC), Sliding Mode Control (SMC), and Extended State Observer (ESO) based SMC are implemented to control the pressure output of the actuator system. The control goal is to drive the actual pressure output to the desired pressure from the impedance control module despite the presence of parameter variations and external disturbances. The performances of these controllers are compared based on their abilities of regulating position, force, and pressure in contact and non-contact situations, as well as the amount of control efforts that excite the valve to achieve these goals. Simulation results demonstrate that ADRC provides the best solution to accomplish the control goals in terms of accurate tracking of position, effectively regulating impedance in the presence of an object, and requiring the least amount of control effort necessary to excite valves

    Review On Controller Design In Pneumatic Actuator Drive System

    Get PDF
    A pneumatic actuator is a device that converts compressed air into mechanical energy to perform varieties of work. It exhibits high nonlinearities due to high friction forces, compressibility of air and dead band of the spool movement which is difficult to manage and requires an appropriate controller for better performance. The purpose of this study is to review the controller design of pneumatic actuator recommended by previous researchers from the past years. Initially, the basic views of the pneumatic will be presented in terms of introduction to the pneumatic actuator and its applications in industries. At the end of this review, discussions on the design of the controllers will be concluded and further research will be proposed along with the improvement of control strategies in the pneumatic actuator systems
    • …
    corecore