1,237 research outputs found

    CapEst: A Measurement-based Approach to Estimating Link Capacity in Wireless Networks

    Full text link
    Estimating link capacity in a wireless network is a complex task because the available capacity at a link is a function of not only the current arrival rate at that link, but also of the arrival rate at links which interfere with that link as well as of the nature of interference between these links. Models which accurately characterize this dependence are either too computationally complex to be useful or lack accuracy. Further, they have a high implementation overhead and make restrictive assumptions, which makes them inapplicable to real networks. In this paper, we propose CapEst, a general, simple yet accurate, measurement-based approach to estimating link capacity in a wireless network. To be computationally light, CapEst allows inaccuracy in estimation; however, using measurements, it can correct this inaccuracy in an iterative fashion and converge to the correct estimate. Our evaluation shows that CapEst always converged to within 5% of the correct value in less than 18 iterations. CapEst is model-independent, hence, is applicable to any MAC/PHY layer and works with auto-rate adaptation. Moreover, it has a low implementation overhead, can be used with any application which requires an estimate of residual capacity on a wireless link and can be implemented completely at the network layer without any support from the underlying chipset

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    A Clean-Slate Architecture for Reliable Data Delivery in Wireless Mesh Networks

    Get PDF
    In this paper, we introduce a clean-slate architecture for improving the delivery of data packets in IEEE 802.11 wireless mesh networks. Opposed to the rigid TCP/IP layer architecture which exhibits serious deficiencies in such networks, we propose a unitary layer approach that combines both routing and transport functionalities in a single layer. The new Mesh Transmission Layer (MTL) incorporates cross-interacting routing and transport modules for a reliable data delivery based on the loss probabilities of wireless links. Due to the significant drawbacks of standard TCP over IEEE 802.11, we particularly focus on the transport module, proposing a pure rate-based approach for transmitting data packets according to the current contention in the network. By considering the IEEE 802.11 spatial reuse constraint and employing a novel acknowledgment scheme, the new transport module improves both goodput and fairness in wireless mesh networks. In a comparative performance study, we show that MTL achieves up to 48% more goodput and up to 100% less packet drops than TCP/IP, while maintaining excellent fairness results

    A Novel Voice Priority Queue (VPQ) Schedule and Algorithm for VoIP over WLAN Network

    Get PDF
    The VoIP deployment on Wireless Local Area Networks (WLANs), which is based on IEEE 802.11 standards, is increasing. Currently, many schedulers have been introduced such as Weighted Fair Queueing (WFQ), Strict Priority (SP) General processor sharing (GPS), Deficit Round Robin (DRR), and Contention-Aware Temporally fair Scheduling (CATS). Unfortunately, the current scheduling techniques have some drawbacks on real-time applications and therefore will not be able to handle the VoIP packets in a proper way. The objective of this research is to propose a new scheduler system model for the VoIP application named final stage of Voice Priority Queue (VPQ) scheduler. The scheduler system model is to ensure efficiency by producing a higher throughput and fairness for VoIP packets. In this paper, only the final Stage of the VPQ packet scheduler and its algorithm are presented. Simulation topologies for VoIP traffic were implemented and analyzed using the Network Simulator (NS-2). The results show that this method can achieve a better and more accurate VoIP quality throughput and fairness index over WLANs

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Gateway Adaptive Pacing for TCP across Multihop Wireless Networks and the Internet

    Get PDF
    In this paper, we introduce an effective congestion control scheme for TCP over hybrid wireless/wired networks comprising a multihop wireless IEEE 802.11 network and the wired Internet. We propose an adaptive pacing scheme at the Internet gateway for wired-to-wireless TCP flows. Furthermore, we analyze the causes for the unfairness of oncoming TCP flows and propose a scheme to throttle aggressive wired-to-wireless TCP flows at the Internet gateway to achieve nearly optimal fairness. Thus, we denote the introduced congestion control scheme TCP with Gateway Adaptive Pacing (TCP-GAP). For wireless-to-wired flows, we propose an adaptive pacing scheme at the TCP sender. In contrast to previous work, TCP-GAP does not impose any control traffic overhead for achieving fairness among active TCP flows. Moreover, TCP-GAP can be incrementally deployed because it does not require any modifications of TCP in the wired part of the network and is fully TCP-compatible. Extensive simulations using ns-2 show that TCPGAP is highly responsive to varying traffic conditions, provides nearly optimal fairness in all scenarios and achieves up to 42% more goodput than TCP NewReno
    • …
    corecore