174 research outputs found

    A Sparse Representation Image Denoising Method Based on Orthogonal Matching Pursuit

    Get PDF
    Image denoising is an important research aspect in the field of digital image processing, and sparse representation theory is also one of the research focuses in recent years. The sparse representation of the image can better extract the nature of the image, and use a way as concise as possible to express the image. In image denoising based on sparse representation, the useful information of the image possess certain structural features, which match the atom structure. However, noise does not possess such property, therefore, sparse representation can effectively separate the useful information from noise to achieve the purpose of denoising. Aiming at image denoising problem of low signal-to-noise ratio (SNR) image, combined with Orthogonal Matching Pursuit and sparse representation theory, this paper puts forward an image denoising method. The experiment shows that compared with the traditional image denoising based on Symlets, image denoising based on Contourlet transform, this method can delete noise in low SNR image and keep the useful information in the original image more efficiently

    Curvelet transform and Hybrid Bacterial Foraging Optimization for image denoising

    Get PDF
    Eliminating noise from the original image is still a challenging task for researchers. Several algorithms have been proposed and each of them has its own assumptions, advantages & limitations. The paper proposes the noise reduction method for the medical images by using Hybrid BFO i.e the fusion of BFO (Bacteria foraging optimization) and the technique of contourlet transform and the results are compared with the older technique of image denoising using curvelet transform. BFO algorithm is an artificial intelligence nature-inspired optimization algorithm technique which is based on mimicking the foraging behavior of E.coli bacteria and it is now applied to the field of imagingdenosin

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Liver CT enhancement using Fractional Differentiation and Integration

    Get PDF
    In this paper, a digital image filter is proposed to enhance the Liver CT image for improving the classification of tumors area in an infected Liver. The enhancement process is based on improving the main features within the image by utilizing the Fractional Differential and Integral in the wavelet sub-bands of an image. After enhancement, different features were extracted such as GLCM, GRLM, and LBP, among others. Then, the areas/cells are classified into tumor or non-tumor, using different models of classifiers to compare our proposed model with the original image and various established filters. Each image is divided into 15x15 non-overlapping blocks, to extract the desired features. The SVM, Random Forest, J48 and Simple Cart were trained on a supplied dataset, different from the test dataset. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of enhancement in the proposed technique

    A new convolutional neural network based on combination of circlets and wavelets for macular OCT classification

    Get PDF
    Artificial intelligence (AI) algorithms, encompassing machine learning and deep learning, can assist ophthalmologists in early detection of various ocular abnormalities through the analysis of retinal optical coherence tomography (OCT) images. Despite considerable progress in these algorithms, several limitations persist in medical imaging fields, where a lack of data is a common issue. Accordingly, specific image processing techniques, such as time–frequency transforms, can be employed in conjunction with AI algorithms to enhance diagnostic accuracy. This research investigates the influence of non-data-adaptive time–frequency transforms, specifically X-lets, on the classification of OCT B-scans. For this purpose, each B-scan was transformed using every considered X-let individually, and all the sub-bands were utilized as the input for a designed 2D Convolutional Neural Network (CNN) to extract optimal features, which were subsequently fed to the classifiers. Evaluating per-class accuracy shows that the use of the 2D Discrete Wavelet Transform (2D-DWT) yields superior outcomes for normal cases, whereas the circlet transform outperforms other X-lets for abnormal cases characterized by circles in their retinal structure (due to the accumulation of fluid). As a result, we propose a novel transform named CircWave by concatenating all sub-bands from the 2D-DWT and the circlet transform. The objective is to enhance the per-class accuracy of both normal and abnormal cases simultaneously. Our findings show that classification results based on the CircWave transform outperform those derived from original images or any individual transform. Furthermore, Grad-CAM class activation visualization for B-scans reconstructed from CircWave sub-bands highlights a greater emphasis on circular formations in abnormal cases and straight lines in normal cases, in contrast to the focus on irrelevant regions in original B-scans. To assess the generalizability of our method, we applied it to another dataset obtained from a different imaging system. We achieved promising accuracies of 94.5% and 90% for the first and second datasets, respectively, which are comparable with results from previous studies. The proposed CNN based on CircWave sub-bands (i.e. CircWaveNet) not only produces superior outcomes but also offers more interpretable results with a heightened focus on features crucial for ophthalmologists

    Enhancement of Single and Composite Images Based on Contourlet Transform Approach

    Get PDF
    Image enhancement is an imperative step in almost every image processing algorithms. Numerous image enhancement algorithms have been developed for gray scale images despite their absence in many applications lately. This thesis proposes hew image enhancement techniques of 8-bit single and composite digital color images. Recently, it has become evident that wavelet transforms are not necessarily best suited for images. Therefore, the enhancement approaches are based on a new 'true' two-dimensional transform called contourlet transform. The proposed enhancement techniques discussed in this thesis are developed based on the understanding of the working mechanisms of the new multiresolution property of contourlet transform. This research also investigates the effects of using different color space representations for color image enhancement applications. Based on this investigation an optimal color space is selected for both single image and composite image enhancement approaches. The objective evaluation steps show that the new method of enhancement not only superior to the commonly used transformation method (e.g. wavelet transform) but also to various spatial models (e.g. histogram equalizations). The results found are encouraging and the enhancement algorithms have proved to be more robust and reliable

    Reliable and Efficient coding Technique for Compression of Medical Images based on Region of Interest using Directional Filter Banks

    Get PDF
    Medical images carry huge and vital information. It is necessary to compress the medical images without losing its vital-ness. The proposed algorithm presents a new coding technique based on  image compression using contourlet transform used in different modalities of medical imaging. Recent reports on natural image compression have shown superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. As far as medical images are concerned the diagnosis part (ROI) is of much important compared to other regions. Therefore those portions are segmented from the whole image using  fuzzy C-means(FCM) clustering technique. Contourlet transform is then applied to ROI portion which performs Laplacian Pyramid(LP) and Directional Filter Banks. The region of less significance are compressed using Discrete Wavelet Transform and finally modified embedded zerotree wavelet algorithm is applied which uses six symbols instead of four symbols used in Shapiro’s EZW to the resultant image which shows better PSNR and high compression ratio.Â
    • …
    corecore