74 research outputs found

    RFID Technology in Intelligent Tracking Systems in Construction Waste Logistics Using Optimisation Techniques

    Get PDF
    Construction waste disposal is an urgent issue for protecting our environment. This paper proposes a waste management system and illustrates the work process using plasterboard waste as an example, which creates a hazardous gas when land filled with household waste, and for which the recycling rate is less than 10% in the UK. The proposed system integrates RFID technology, Rule-Based Reasoning, Ant Colony optimization and knowledge technology for auditing and tracking plasterboard waste, guiding the operation staff, arranging vehicles, schedule planning, and also provides evidence to verify its disposal. It h relies on RFID equipment for collecting logistical data and uses digital imaging equipment to give further evidence; the reasoning core in the third layer is responsible for generating schedules and route plans and guidance, and the last layer delivers the result to inform users. The paper firstly introduces the current plasterboard disposal situation and addresses the logistical problem that is now the main barrier to a higher recycling rate, followed by discussion of the proposed system in terms of both system level structure and process structure. And finally, an example scenario will be given to illustrate the system’s utilization

    Faculty Publications & Presentations, 2010-2011

    Get PDF

    International logistics

    Get PDF

    Exploitation of Geographic Information Systems for Vehicular Destination Prediction

    Get PDF
    Much of the recent successes in the Iraqi theater have been achieved with the aid of technology so advanced that celebrated journalist Bob Woodward recently compared it to the Manhattan Project of WWII. Intelligence, Surveillance, and Reconnaissance (ISR) platforms have emerged as the rising star of Air Force operational capabilities as they are enablers in the quest to track and disrupt terrorist and insurgent forces. This thesis argues that ISR systems have been severely under-exploited. The proposals herein seek to improve the machine-human interface of current ISR systems such that a predictive battle-space awareness may be achieved, leading to shorter kill-chains and better utilization of high demand assets. This thesis shows that, if a vehicle is being tracked by an ISR platform, it is possible to predict where it might go within a Time Horizon. This predictive knowledge is represented graphically to enable quick decisioning. This is accomplished by using Geo-Spatial Information Systems (GIS) obtained from municipal, commercial, or other ISR sources (e.g., hyperspectral) to model an urban grid. It then employs graph-theoretic search algorithms that prune the future state-space of that vehicle\u27s environment, resulting in an envelope that constricts around all possible destinations. This thesis demonstrates an 81 % success rate for predictions carried out during experimentation. It further demonstrates a 97 % improvement over predictions made solely with models based on vehicular motion. This thesis reveals that the predictive envelopes show immense promise in improving ISR asset management, offering more intelligent interdiction of targets, and enabling ground sensor-cueing. Moreover, these predictive capabilities allow an operator to assign assets to make precise perturbations on the battle-space for true event-shaping. Finally, this thesis shows that the proposed methodologies are easily and cost-effectively deployed over existing Air Force architectures using the Software as a Service business model

    A context model, design tool and architecture for context-aware systems designs

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore