170 research outputs found

    The Buffered Block Forward Backward technique for solving electromagnetic wave scattering problems

    Get PDF
    This work focuses on efficient numerical techniques for solving electromagnetic wave scattering problems. The research is focused on three main areas: scattering from perfect electric conductors, 2D dielectric scatterers and 3D dielectric scattering objects. The problem of fields scattered from perfect electric conductors is formulated using the Electric Field Integral Equation. The Coupled Field Integral Equation is used when a 2D homogeneous dielectric object is considered. The Combined Field Integral Equation describes the problem of scattering from 3D homogeneous dielectric objects. Discretising the Integral Equation Formulation using the Method of Moments creates the matrix equation that is to be solved. Due to the large number of discretisations necessary the resulting matrices are of significant size and therefore the matrix equations cannot be solved by direct inversion and iterative methods are employed instead. Various iterative techniques for solving the matrix equation are presented including stationary methods such as the ”forwardbackward” technique, as well its matrix-block version. A novel iterative solver referred to as Buffered Block Forward Backward (BBFB) method is then described and investigated. It is shown that the incorporation of buffer regions dampens spurious diffraction effects and increases the computational efficiency of the algorithm. The BBFB is applied to both perfect electric conductors and homogeneous dielectric objects. The convergence of the BBFB method is compared to that of other techniques and it is shown that, depending on the grouping and buffering used, it can be more effective than classical methods based on Krylov subspaces for example. A possible application of the BBFB, namely the design of 2D dielectric photonic band-gap TeraHertz waveguides is investigated. i

    Contributions to discrete-time methods for room acoustic simulation

    Full text link
    The sound field distribution in a room is the consequence of the acoustic properties of radiating sources and the position, geometry and absorbing characteristics of the surrounding boundaries in an enclosure (boundary conditions). Despite there existing a consolidated acoustic wave theory, it is very difficult, nearly impossible, to find an analytical expression of the sound variables distribution in a real room, as a function of time and position. This scenario represents as an inhomogeneous boundary value problem, where the complexity of source properties and boundary conditions make that problem extremely hard to solve. Room acoustic simulation, as treated in this thesis, comprises the algebraical approach to solve the wave equation, and the way to define the boundary conditions and source modeling of the scenario under analysis. Numerical methods provide accurate algorithms for this purpose and among the different possibilities, the use of discrete-time methods arises as a suitable solution for solving those partial differential equations, particularized by some specific constrains. Together with the constant growth of computer power, those methods are increasing their suitability for room acoustic simulation. However, there exists an important lack of accuracy in the definition of some of these conditions so far: current frequency-dependent boundary conditions do not comply with any physical model, and directive sources in discrete-time methods have been hardly treated. This thesis discusses about the current state-of-the-art of the boundary conditions and source modeling in discrete-time methods for room acoustic simulation, and it contributes some algorithms to enhance boundary condition formulation, in a locally reacting impedance sense, and source modelling in terms of directive sources under a defined radiation pattern. These algorithms have been particularized to some discrete-time methods such as the Finite Difference Time Domain and the Digital Waveguide Mesh.Escolano Carrasco, J. (2008). Contributions to discrete-time methods for room acoustic simulation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8309Palanci

    Parallel computation techniques for virtual acoustics and physical modelling synthesis

    Get PDF
    The numerical simulation of large-scale virtual acoustics and physical modelling synthesis is a computationally expensive process. Time stepping methods, such as finite difference time domain, can be used to simulate wave behaviour in models of three-dimensional room acoustics and virtual instruments. In the absence of any form of simplifying assumptions, and at high audio sample rates, this can lead to simulations that require many hours of computation on a standard Central Processing Unit (CPU). In recent years the video game industry has driven the development of Graphics Processing Units (GPUs) that are now capable of multi-teraflop performance using highly parallel architectures. Whilst these devices are primarily designed for graphics calculations, they can also be used for general purpose computing. This thesis explores the use of such hardware to accelerate simulations of three-dimensional acoustic wave propagation, and embedded systems that create physical models for the synthesis of sound. Test case simulations of virtual acoustics are used to compare the performance of workstation CPUs to that of Nvidia’s Tesla GPU hardware. Using representative multicore CPU benchmarks, such simulations can be accelerated in the order of 5X for single precision and 3X for double precision floating-point arithmetic. Optimisation strategies are examined for maximising GPU performance when using single devices, as well as for multiple device codes that can compute simulations using billions of grid points. This allows the simulation of room models of several thousand cubic metres at audio rates such as 44.1kHz, all within a useable time scale. The performance of alternative finite difference schemes is explored, as well as strategies for the efficient implementation of boundary conditions. Creating physical models of acoustic instruments requires embedded systems that often rely on sparse linear algebra operations. The performance efficiency of various sparse matrix storage formats is detailed in terms of the fundamental operations that are required to compute complex models, with an optimised storage system achieving substantial performance gains over more generalised formats. An integrated instrument model of the timpani drum is used to demonstrate the performance gains that are possible using the optimisation strategies developed through this thesis

    Investigation of general-purpose computing on graphics processing units and its application to the finite element analysis of electromagnetic problems

    Get PDF
    In this dissertation, the hardware and API architectures of GPUs are investigated, and the corresponding acceleration techniques are applied on the traditional frequency domain finite element method (FEM), the element-level time-domain methods, and the nonlinear discontinuous Galerkin method. First, the assembly and the solution phases of the FEM are parallelized and mapped onto the granular GPU processors. Efficient parallelization strategies for the finite element matrix assembly on a single GPU and on multiple GPUs are proposed. The parallelization strategies for the finite element matrix solution, in conjunction with parallelizable preconditioners are investigated to reduce the total solution time. Second, the element-level dual-field domain decomposition (DFDD-ELD) method is parallelized on GPU. The element-level algorithms treat each finite element as a subdomain, where the elements march the fields in time by exchanging fields and fluxes on the element boundary interfaces with the neighboring elements. The proposed parallelization framework is readily applicable to similar element-level algorithms, where the application to the discontinuous Galerkin time-domain (DGTD) methods show good acceleration results. Third, the element-level parallelization framework is further adapted to the acceleration of nonlinear DGTD algorithm, which has potential applications in the field of optics. The proposed nonlinear DGTD algorithm describes the third-order instantaneous nonlinear effect between the electromagnetic field and the medium permittivity. The Newton-Raphson method is incorporated to reduce the number of nonlinear iterations through its quadratic convergence. Various nonlinear examples are presented to show the different Kerr effects observed through the third-order nonlinearity. With the acceleration using MPI+GPU under large cluster environments, the solution times for the various linear and nonlinear examples are significantly reduced

    Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    Get PDF
    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost

    The ADI-FDTD Method for High Accuracy Electrophysics Applications

    Get PDF
    The Finite-Difference Time-Domain (FDTD) is a dependable method to simulate a wide range of problems from acoustics, to electromagnetics, and to photonics, amongst others. The execution time of an FDTD simulation is inversely proportional to the time-step size. Since the FDTD method is explicit, its time-step size is limited by the well-known Courant-Friedrich-Levy (CFL) stability limit. The CFL stability limit can render the simulation inefficient for very fine structures. The Alternating Direction Implicit FDTD (ADI-FDTD) method has been introduced as an unconditionally stable implicit method. Numerous works have shown that the ADI-FDTD method is stable even when the CFL stability limit is exceeded. Therefore, the ADI-FDTD method can be considered an efficient method for special classes of problems with very fine structures or high gradient fields. Whenever the ADI-FDTD method is used to simulate open-region radiation or scattering problems, the implementation of a mesh-truncation scheme or absorbing boundary condition becomes an integral part of the simulation. These truncation techniques represent, in essence, differential operators that are discretized using a distinct differencing scheme which can potentially affect the stability of the scheme used for the interior region. In this work, we show that the ADI-FDTD method can be rendered unstable when higher-order mesh truncation techniques such as Higdon's Absorbing Boundary Condition (ABC) or Complementary Derivatives Method (COM) are used. When having large field gradients within a limited volume, a non-uniform grid can reduce the computational domain and, therefore, it decreases the computational cost of the FDTD method. However, for high-accuracy problems, different grid sizes increase the truncation error at the boundary of domains having different grid sizes. To address this problem, we introduce the Complementary Derivatives Method (CDM), a second-order accurate interpolation scheme. The CDM theory is discussed and applied to numerical examples employing the FDTD and ADI-FDTD methods
    • …
    corecore