339 research outputs found

    All Multiparty Quantum States Can Be Made Monogamous

    Full text link
    Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that is expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.Comment: 6.5 pages, 2 figures, RevTeX 4-1, Title in the published version is "Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous

    Universality in Distribution of Monogamy Scores for Random Multiqubit Pure States

    Full text link
    Monogamy of quantum correlations provides a way to study restrictions on their sharability in multiparty systems. We find the critical exponent of these measures, above which randomly generated multiparty pure states satisfy the usual monogamy relation, and show that the critical power decreases with the increase in the number of parties. For three-qubit pure states, we detect that W-class states are more prone to being nonmonogamous as compared to the GHZ-class states. We also observe a different criticality in monogamy power up to which random pure states remain nonmonogamous. We prove that the "average monogamy" score asymptotically approaches its maximal value on increasing the number of parties. Analyzing the monogamy scores of random three-, four-, five- and six-qubit pure states, we also report that almost all random pure six-qubit states possess maximal monogamy score, which we confirm by evaluating statistical quantities like mean, variance and skewness of the distributions. In particular, with the variation of number of qubits, means of the distributions of monogamy scores for random pure states approach to unity -- which is the algebraic maximum -- thereby conforming to the known results of random states having maximal multipartite entanglement in terms of geometric measures.Comment: 12 pages, 7 figure

    Correlation evolution and monogamy of two geometric quantum discords in multipartite systems

    Full text link
    We explore two different geometric quantum discords defined respectively via the trace norm (GQD-1) and Hilbert-Schmidt norm (GQD-2) in multipartite systems. A rigorous hierarchy relation is revealed for the two GQDs in a class of symmetric two-qubit XX-shape states. For multiqubit pure states, it is found that both GQDs are related to the entanglement concurrence, with the hierarchy relation being saturated. Furthermore, we look into a four-partite dynamical system consisting of two cavities interacting with independent reservoirs. It is found that the GQD-2 can exhibit various sudden change behaviours, while the GQD-1 only evolves asymptotically, with the two GQDs exhibiting different monogamous properties.Comment: 5 pages, 3 figure

    Monogamous property of generalized W states in three-qubit systems in terms of relative entropy of entanglement

    Full text link
    Because of the difficulty in getting the analytic formula of relative entropy of entanglement, it becomes troublesome to study the monogamy relations of relative entropy of entanglement for three-qubit pure states. However, we find that all generalized W states have the monogamous property for relative entropy of entanglement by calculating the relative entropy of entanglement for the reduced states of the generalized W states in three-qubit systems.Comment: 9 pages, 1 figur
    • …
    corecore