3,117 research outputs found

    Convergence of a Finite Volume Scheme for a Corrosion Model

    Get PDF
    In this paper, we study the numerical approximation of a system of partial dif-ferential equations describing the corrosion of an iron based alloy in a nuclear waste repository. In particular, we are interested in the convergence of a numerical scheme consisting in an implicit Euler scheme in time and a Scharfetter-Gummel finite volume scheme in space

    Self-Similar Evolution of Cosmic-Ray-Modified Quasi-Parallel Plane Shocks

    Full text link
    Using an improved version of the previously introduced CRASH (Cosmic Ray Acceleration SHock) code, we have calculated the time evolution of cosmic-ray (CR) modified quasi-parallel plane shocks for Bohm-like diffusion, including self-consistent models of Alfven wave drift and dissipation, along with thermal leakage injection of CRs. The new simulations follow evolution of the CR distribution to much higher energies than our previous study, providing a better examination of evolutionary and asymptotic behaviors. The postshock CR pressure becomes constant after quick initial adjustment, since the evolution of the CR partial pressure expressed in terms of a momentum similarity variable is self-similar. The shock precursor, which scales as the diffusion length of the highest energy CRs, subsequently broadens approximately linearly with time, independent of diffusion model, so long as CRs continue to be accelerated to ever-higher energies. This means the nonlinear shock structure can be described approximately in terms of the similarity variable, x/(u_s t), where u_s is the shock speed once the postshock pressure reaches an approximate time asymptotic state. As before, the shock Mach number is the key parameter determining the evolution and the CR acceleration efficiency, although finite Alfven wave drift and wave energy dissipation in the shock precursor reduce the effective velocity change experienced by CRs, so reduce acceleration efficiency noticeably, thus, providing a second important parameter at low and moderate Mach numbers.Comment: 29 pages, 8 figure

    Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    Get PDF
    This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately

    A Finite-Volume Scheme for a Spinorial Matrix Drift-Diffusion Model for Semiconductors

    Get PDF
    An implicit Euler finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors is analyzed. The model consists of strongly coupled parabolic equations for the electron density matrix or, alternatively, of weakly coupled equations for the charge and spin-vector densities, coupled to the Poisson equation for the elec-tric potential. The equations are solved in a bounded domain with mixed Dirichlet-Neumann boundary conditions. The charge and spin-vector fluxes are approximated by a Scharfetter-Gummel discretization. The main features of the numerical scheme are the preservation of positivity and L ∞\infty bounds and the dissipation of the discrete free energy. The existence of a bounded discrete solution and the monotonicity of the discrete free energy are proved. For undoped semiconductor materials, the numerical scheme is uncon-ditionally stable. The fundamental ideas are reformulations using spin-up and spin-down densities and certain projections of the spin-vector density, free energy estimates, and a discrete Moser iteration. Furthermore, numerical simulations of a simple ferromagnetic-layer field-effect transistor in two space dimensions are presented

    Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier-Stokes equations

    Get PDF
    We discuss the dynamics of zonal (or unidirectional) jets for barotropic flows forced by Gaussian stochastic fields with white in time correlation functions. This problem contains the stochastic dynamics of 2D Navier-Stokes equation as a special case. We consider the limit of weak forces and dissipation, when there is a time scale separation between the inertial time scale (fast) and the spin-up or spin-down time (large) needed to reach an average energy balance. In this limit, we show that an adiabatic reduction (or stochastic averaging) of the dynamics can be performed. We then obtain a kinetic equation that describes the slow evolution of zonal jets over a very long time scale, where the effect of non-zonal turbulence has been integrated out. The main theoretical difficulty, achieved in this work, is to analyze the stationary distribution of a Lyapunov equation that describes quasi-Gaussian fluctuations around each zonal jet, in the inertial limit. This is necessary to prove that there is no ultraviolet divergence at leading order in such a way that the asymptotic expansion is self-consistent. We obtain at leading order a Fokker--Planck equation, associated to a stochastic kinetic equation, that describes the slow jet dynamics. Its deterministic part is related to well known phenomenological theories (for instance Stochastic Structural Stability Theory) and to quasi-linear approximations, whereas the stochastic part allows to go beyond the computation of the most probable zonal jet. We argue that the effect of the stochastic part may be of huge importance when, as for instance in the proximity of phase transitions, more than one attractor of the dynamics is present

    Well posedness and Maximum Entropy Approximation for the Dynamics of Quantitative Traits

    Full text link
    We study the Fokker-Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker-Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain's boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium. Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of moments of the Fokker-Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one.Comment: 28 pages, 4 tables, 5 figure

    Degenerate anisotropic elliptic problems and magnetized plasma simulations

    Full text link
    This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem. The numerical method is designed for arbitrary space-dependent anisotropy directions and does not require any specially adapted coordinate system. It is also designed to be equally accurate in the strongly and the mildly anisotropic cases. The method is applied to the Euler-Lorentz system, in the drift-fluid limit. This system provides a model for magnetized plasmas
    • 

    corecore