151,630 research outputs found

    ”Mine works better” - Examining the influence of embodiment in virtual reality on the sense of agency during a binary motor imagery task with a brain-computer interface

    Get PDF
    Motor imagery-based brain-computer interfaces (MI-BCI) have been proposed as a means for stroke rehabilitation, which combined with virtual reality allows for introducing game-based interactions into rehabilitation. However, the control of the MI-BCI may be difficult to obtain and users may face poor performance which frustrates them and potentially affects their motivation to use the technology. Decreases in motivation could be reduced by increasing the users' sense of agency over the system. The aim of this study was to understand whether embodiment (ownership) of a hand depicted in virtual reality can enhance the sense of agency to reduce frustration in an MI-BCI task. Twenty-two healthy participants participated in a within-subject study where their sense of agency was compared in two different embodiment experiences: 1) avatar hand (with body), or 2) abstract blocks. Both representations closed with a similar motion for spatial congruency and popped a balloon as a result. The hand/blocks were controlled through an online MI-BCI. Each condition consisted of 30 trials of MI-activation of the avatar hand/blocks. After each condition a questionnaire probed the participants' sense of agency, ownership, and frustration. Afterwards, a semi-structured interview was performed where the participants elaborated on their ratings. Both conditions supported similar levels of MI-BCI performance. A significant correlation between ownership and agency was observed (r = 0.47, p = 0.001). As intended, the avatar hand yielded much higher ownership than the blocks. When controlling for performance, ownership increased sense of agency. In conclusion, designers of BCI-based rehabilitation applications can draw on anthropomorphic avatars for the visual mapping of the trained limb to improve ownership. While not While not reducing frustration ownership can improve perceived agency given sufficient BCI performance. In future studies the findings should be validated in stroke patients since they may perceive agency and ownership differently than able-bodied users

    Presence and rehabilitation: toward second-generation virtual reality applications in neuropsychology

    Get PDF
    Virtual Reality (VR) offers a blend of attractive attributes for rehabilitation. The most exploited is its ability to create a 3D simulation of reality that can be explored by patients under the supervision of a therapist. In fact, VR can be defined as an advanced communication interface based on interactive 3D visualization, able to collect and integrate different inputs and data sets in a single real-like experience. However, "treatment is not just fixing what is broken; it is nurturing what is best" (Seligman & Csikszentmihalyi). For rehabilitators, this statement supports the growing interest in the influence of positive psychological state on objective health care outcomes. This paper introduces a bio-cultural theory of presence linking the state of optimal experience defined as "flow" to a virtual reality experience. This suggests the possibility of using VR for a new breed of rehabilitative applications focused on a strategy defined as transformation of flow. In this view, VR can be used to trigger a broad empowerment process within the flow experience induced by a high sense of presence. The link between its experiential and simulative capabilities may transform VR into the ultimate rehabilitative device. Nevertheless, further research is required to explore more in depth the link between cognitive processes, motor activities, presence and flow

    Embodiment and Presence in Virtual Reality After Stroke. A Comparative Study With Healthy Subjects

    Full text link
    [EN] The ability of virtual reality (VR) to recreate controlled, immersive, and interactive environments that provide intensive and customized exercises has motivated its therapeutic use after stroke. Interaction and bodily presence in VR-based interventions is usually mediated through virtual selves, which synchronously represent body movements or responses to events on external input devices. Embodied self-representations in the virtual world not only provide an anchor for visuomotor tasks, but their morphologies can have behavioral implications. While research has focused on the underlying subjective mechanisms of exposure to VR on healthy individuals, the transference of these findings to individuals with stroke is not evident and remains unexplored, which could affect the experience and, ultimately, the clinical effectiveness of neurorehabilitation interventions. This study determined and compared the sense of embodiment and presence elicited by a virtual environment under different perspectives and levels of immersion in healthy subjects and individuals with stroke. Forty-six healthy subjects and 32 individuals with stroke embodied a gender-matched neutral avatar in a virtual environment that was displayed in a first-person perspective with a head-mounted display and in a third-person perspective with a screen, and the participants were asked to interact in a virtual task for 10 min under each condition in counterbalanced order, and to complete two questionnaires about the sense of embodiment and presence experienced during the interaction. The sense of body-ownership, self-location, and presence were more vividly experienced in a first-person than in a third-person perspective by both healthy subjects (p < 0.001, eta(2)(p) = 0.212; p = 0.005, eta(2)(p) = 0.101; p = 0.001, eta(2)(p) = 0.401, respectively) and individuals with stroke (p = 0.019, eta(2)(p) = 0.070; p = 0.001, eta(2)(p) = 0.135; p = 0.014, eta(2)(p) = 0.077, respectively). In contrast, no agency perspective-related differences were found in any group. All measures were consistently higher for healthy controls than for individuals with stroke, but differences between groups only reached statistical significance in presence under the first-person condition (p < 0.010, eta(2)(p) = 0.084). In spite of these differences, the participants experienced a vivid sense of embodiment and presence in almost all conditions. These results provide first evidence that, although less intensively, embodiment and presence are similarly experienced by individuals who have suffered a stroke and by healthy individuals, which could support the vividness of their experience and, consequently, the effectiveness of VR-based interventions.This study was funded by Ministerio de Economía y Competitividad of Spain (Project RTC-2017-6051-7 and Grant BES-2014-068218), Fundació la Marató de la TV3 (Grant 201701-10), and Universitat Politècnica de València (Grant PAID-10-18). We acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Borrego, A.; Latorre, J.; Alcañiz Raya, ML.; Llorens Rodríguez, R. (2019). Embodiment and Presence in Virtual Reality After Stroke. A Comparative Study With Healthy Subjects. Frontiers in Neurology. 10:1-8. https://doi.org/10.3389/fneur.2019.01061S1810Berlucchi, G., & Aglioti, S. (1997). The body in the brain: neural bases of corporeal awareness. Trends in Neurosciences, 20(12), 560-564. doi:10.1016/s0166-2236(97)01136-3Legrand, D. (2006). The Bodily Self: The Sensori-Motor Roots of Pre-Reflective Self-Consciousness. Phenomenology and the Cognitive Sciences, 5(1), 89-118. doi:10.1007/s11097-005-9015-6Arzy, S., Overney, L. S., Landis, T., & Blanke, O. (2006). Neural Mechanisms of Embodiment. Archives of Neurology, 63(7), 1022. doi:10.1001/archneur.63.7.1022De Vignemont, F. (2011). Embodiment, ownership and disownership. Consciousness and Cognition, 20(1), 82-93. doi:10.1016/j.concog.2010.09.004Giummarra, M. J., Gibson, S. J., Georgiou-Karistianis, N., & Bradshaw, J. L. (2008). Mechanisms underlying embodiment, disembodiment and loss of embodiment. Neuroscience & Biobehavioral Reviews, 32(1), 143-160. doi:10.1016/j.neubiorev.2007.07.001Ma, K., & Hommel, B. (2015). The role of agency for perceived ownership in the virtual hand illusion. Consciousness and Cognition, 36, 277-288. doi:10.1016/j.concog.2015.07.008Kilteni, K., Maselli, A., Kording, K. P., & Slater, M. (2015). Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00141Clark, A., Kiverstein, J., & Vierkant, T. (Eds.). (2013). Decomposing the Will. doi:10.1093/acprof:oso/9780199746996.001.0001Frith, C. D., Blakemore, S.-J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355(1404), 1771-1788. doi:10.1098/rstb.2000.0734Bermúdez i Badia, S., Fluet, G. G., Llorens, R., & Deutsch, J. E. (2016). Virtual Reality for Sensorimotor Rehabilitation Post Stroke: Design Principles and Evidence. Neurorehabilitation Technology, 573-603. doi:10.1007/978-3-319-28603-7_28Perez-Marcos, D., Sanchez-Vives, M. V., & Slater, M. (2011). Is my hand connected to my body? The impact of body continuity and arm alignment on the virtual hand illusion. Cognitive Neurodynamics, 6(4), 295-305. doi:10.1007/s11571-011-9178-5IJsselsteijn, W. A., de Kort, Y. A. W., & Haans, A. (2006). Is This My Hand I See Before Me? The Rubber Hand Illusion in Reality, Virtual Reality, and Mixed Reality. Presence: Teleoperators and Virtual Environments, 15(4), 455-464. doi:10.1162/pres.15.4.455Banakou, D., Groten, R., & Slater, M. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proceedings of the National Academy of Sciences, 110(31), 12846-12851. doi:10.1073/pnas.1306779110Yee, N., & Bailenson, J. (2007). The Proteus Effect: The Effect of Transformed Self-Representation on Behavior. Human Communication Research, 33(3), 271-290. doi:10.1111/j.1468-2958.2007.00299.xSteed, A., Frlston, S., Lopez, M. M., Drummond, J., Pan, Y., & Swapp, D. (2016). An ‘In the Wild’ Experiment on Presence and Embodiment using Consumer Virtual Reality Equipment. IEEE Transactions on Visualization and Computer Graphics, 22(4), 1406-1414. doi:10.1109/tvcg.2016.2518135Colomer, C., Llorens, R., Noé, E., & Alcañiz, M. (2016). Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Journal of NeuroEngineering and Rehabilitation, 13(1). doi:10.1186/s12984-016-0153-6Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd008349.pub4Llorens, R., Borrego, A., Palomo, P., Cebolla, A., Noé, E., i Badia, S. B., & Baños, R. (2017). Body schema plasticity after stroke: Subjective and neurophysiological correlates of the rubber hand illusion. Neuropsychologia, 96, 61-69. doi:10.1016/j.neuropsychologia.2017.01.007Zeller, D., Gross, C., Bartsch, A., Johansen-Berg, H., & Classen, J. (2011). Ventral Premotor Cortex May Be Required for Dynamic Changes in the Feeling of Limb Ownership: A Lesion Study. Journal of Neuroscience, 31(13), 4852-4857. doi:10.1523/jneurosci.5154-10.2011Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Romero, M., Sánchez, A., Marín, C., Navarro, M. D., Ferri, J., & Noé, E. (2012). Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. Neurología (English Edition), 27(4), 216-224. doi:10.1016/j.nrleng.2011.06.001Latorre, J., Llorens, R., Colomer, C., & Alcañiz, M. (2018). Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. Journal of Biomechanics, 72, 268-273. doi:10.1016/j.jbiomech.2018.03.008Lloréns, R., Noé, E., Naranjo, V., Borrego, A., Latorre, J., & Alcañiz, M. (2015). Tracking Systems for Virtual Rehabilitation: Objective Performance vs. Subjective Experience. A Practical Scenario. Sensors, 15(3), 6586-6606. doi:10.3390/s150306586Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First Person Experience of Body Transfer in Virtual Reality. PLoS ONE, 5(5), e10564. doi:10.1371/journal.pone.0010564Petkova, V. I., Khoshnevis, M., & Ehrsson, H. H. (2011). The Perspective Matters! Multisensory Integration in Ego-Centric Reference Frames Determines Full-Body Ownership. Frontiers in Psychology, 2. doi:10.3389/fpsyg.2011.00035Maselli, A., & Slater, M. (2013). The building blocks of the full body ownership illusion. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00083Debarba, H. G., Molla, E., Herbelin, B., & Boulic, R. (2015). Characterizing embodied interaction in First and Third Person Perspective viewpoints. 2015 IEEE Symposium on 3D User Interfaces (3DUI). doi:10.1109/3dui.2015.7131728Burin, D., Livelli, A., Garbarini, F., Fossataro, C., Folegatti, A., Gindri, P., & Pia, L. (2015). Are Movements Necessary for the Sense of Body Ownership? Evidence from the Rubber Hand Illusion in Pure Hemiplegic Patients. PLOS ONE, 10(3), e0117155. doi:10.1371/journal.pone.0117155Post-stroke cognitive disorders TeasellR SalterK FaltynekP CotoiA EskesG Evidence-Based Review of Stroke Rehabilitatio

    Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body

    Get PDF
    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups

    Reconfiguring Interactivity, Agency and Pleasure in the Education and Computer Games Debate – using Žižek’s concept of interpassivity to analyse educational play

    Get PDF
    Digital or computer games have recently attracted the interest of education researchers and policy-makers for two main reasons: their interactivity, which is said to allow greater agency, and their inherent pleasures, which is linked to increased motivation to learn. However, the relationship between pleasure, agency and motivation in educational technologies is under-theorised. This paper aims to situate these concepts within a framework that might identify more precisely how games can be considered to be educational. The framework is based on Zizek’s theory of subjectivity in cyberspace, and in particular his notion of interpassivity, which is defined in relation to interactivity. The usefulness of this concept is explored firstly by examining three approaches to theorizing cyberspace and their respective manifestations in key texts on educational game play. Zizek’s analysis of cyberspace in terms of socio-symbolic relations is then outlined to suggest how games might be considered educational insofar as they provide opportunities to manipulate and experiment with the rules underpinning our sense of reality and identity. This resembles Brecht’s notion of the educational value of theatre. The conclusion emphasizes that the terms on which games are understood to be educational relates to the social interests which education is understood to serve

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    MetaSpace II: Object and full-body tracking for interaction and navigation in social VR

    Full text link
    MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video: http://living.media.mit.edu/projects/metaspace-ii
    corecore