247 research outputs found

    Smoothing tautologies, hidden dynamics, and sigmoid asymptotics for piecewise smooth systems

    Get PDF
    Switches in real systems take many forms, such as impacts, electronic relays, mitosis, and the implementation of decisions or control strategies. To understand what is lost, and what can be retained, when we model a switch as an instantaneous event, requires a consideration of so-called hidden terms. These are asymptotically vanishing outside the switch, but can be encoded in the form of nonlinear switching terms. A general expression for the switch can be developed in the form of a series of sigmoid functions. We review the key steps in extending the Filippov's method of sliding modes to such systems. We show how even slight nonlinear effects can hugely alter the behaviour of an electronic control circuit, and lead to `hidden' attractors inside the switching surface.Comment: 12 page

    Hidden Degeneracies in Piecewise Smooth Dynamical Systems

    Get PDF

    Non-Filippov dynamics arising from the smoothing of nonsmooth systems, and its robustness to noise

    Get PDF
    Switch-like behaviour in dynamical systems may be modelled by highly nonlinear functions, such as Hill functions or sigmoid functions, or alternatively by piecewise-smooth functions, such as step functions. Consistent modelling requires that piecewise-smooth and smooth dynamical systems have similar dynamics, but the conditions for such similarity are not well understood. Here we show that by smoothing out a piecewise-smooth system one may obtain dynamics that is inconsistent with the accepted wisdom --- so-called Filippov dynamics --- at a discontinuity, even in the piecewise-smooth limit. By subjecting the system to white noise, we show that these discrepancies can be understood in terms of potential wells that allow solutions to dwell at the discontinuity for long times. Moreover we show that spurious dynamics will revert to Filippov dynamics, with a small degree of stochasticity, when the noise magnitude is sufficiently large compared to the order of smoothing. We apply the results to a model of a dry-friction oscillator, where spurious dynamics (inconsistent with Filippov's convention or with Coulomb's model of friction) can account for different coefficients of static and kinetic friction, but under sufficient noise the system reverts to dynamics consistent with Filippov's convention (and with Coulomb-like friction).Comment: submitted to: Nonlinear Dynamic
    • …
    corecore