122 research outputs found

    Performance Optimization of Peak to Average Power Ratio in FBMC Waveforms

    Get PDF
    High spectral efficiency and low computational complexity are the requirements of 5G wireless communication systems. They must also offer low PAPR (peak to average power ratio), low latency, and high throughput. In 5G it is not possible to realise all of these requirements through a single technique. One of the efforts is to look for a suitable technique for 5G. So, a suitable technique emerges whose name is Filter Bank Multicarrier (FBMC). But it has a high complexity, high Peak to Average Power (PAPR) and high out of band (OOB) leakage which results in inter-carrier interference and inter-channel interference. Also, due to high PAPR, mobile batteries are depleted more rapidly. So, a PAPR reduced method is needed. In this paper, a method of Pruned DFT Precoded FBMC to optimize the PAPR for different number of subcarriers. The performance evaluation in terms of bit error rate (BER) and spectral efficiency of OFDM, FBMC and Pruned DFT Precoded FBMC has been done in this paper.  In DFT Precoded FBMC, a DFT spreading matrix is multiplied with FBMC waveform and transmit only some part especially half of the DFT precoded matrix and rest remain zero by us. Monte Carlo simulation with one tap equalizer is used to validate our results

    Pulse shaping approach to PAPR reduction for OFDM communication systems

    Get PDF
    One of the main drawbacks of the OFDM communication system is the high peak-to-average-power ratio (PAPR) of the transmitted signal. In this thesis: (i ) Optimal pulse shaping filter design is proposed to reduce the PAPR of the OFDM signal; (ii ) The level crossing rate theorem is used to derive an upper bound for the CCDF of PAPR of OFDM signal with pulse shaping; (iii ) The multiple filter design is proposed to reduce the PAPR of multiuser OFDM signal

    Extended GFDM Framework: OTFS and GFDM Comparison

    Full text link
    Orthogonal time frequency space modulation (OTFS) has been recently proposed to achieve time and frequency diversity, especially in linear time-variant (LTV) channels with large Doppler frequencies. The idea is based on the precoding of the data symbols using symplectic finite Fourier transform (SFFT) then transmitting them by mean of orthogonal frequency division multiplexing (OFDM) waveform. Consequently, the demodulator and channel equalization can be coupled in one processing step. As a distinguished feature, the demodulated data symbols have roughly equal gain independent of the channel selectivity. On the other hand, generalized frequency division multiplexing (GFDM) modulation also employs the spreading over the time and frequency domains using circular filtering. Accordingly, the data symbols are implicitly precoded in a similar way as applying SFFT in OTFS. In this paper, we present an extended representation of GFDM which shows that OTFS can be processed as a GFDM signal with simple permutation. Nevertheless, this permutation is the key factor behind the outstanding performance of OTFS in LTV channels, as demonstrated in this work. Furthermore, the representation of OTFS in the GFDM framework provides an efficient implementation, that has been intensively investigated for GFDM, and facilitates the understanding of the OTFS distinct features.Comment: Accepted in IEEE Global Communications Conference 9-13 December 2018 Abu Dhabi, UA

    Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

    Get PDF
    The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future work

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Secured Audio Signal Transmission in 5G Compatible mmWave Massive MIMO FBMC System with Implementation of Audio-to-image Transformation Aided Encryption Scheme

    Get PDF
    In this paper, we have made comprehensive study for the performance evaluation of mmWave massive MIMO FBMC wireless communication system. The 165F2;56 large MIMO antenna configured simulated system under investigation incorporates three modern channel coding (Turbo, LDPC and (3, 2) SPC, higher order digital modulation (256-QAM)) and various signal detection (Q-Less QR, Lattice Reduction(LR) based Zero-forcing(ZF), Lattice Reduction (LR) based ZF-SIC and Complex-valued LLL(CLLL) algorithm implemented ZF-SIC) schemes. An audio to image conversion aided chaos-based physical layer security scheme has also been implemented in such study. On considering transmission of encrypted audio signal in a hostile fading channel, it is noticeable from MATLAB based simulation study that the LDPC Channel encoded system is very much robust and effective in retrieving color image under utilization of Lattice Reduction(LR) based ZF-SIC signal detection and 16- QAM digital modulation techniques

    MULTICARRIER TRANSMISSION TECHNIQUES

    Get PDF
    In this thesis, multicarrier transmission techniques envisioned for the fifth-generation wireless networks are studied. First, three basic techniques, namely orthogonal frequency-division multiplexing (OFDM), filter-bank multicarrier offset quadrature amplitude modulation (FBMC-OQAM), and generalized frequency-division multiplexing (GFDM) are reviewed in detail. In particular, the block-based structure and cyclic prefixing of OFDM are discussed and its bit error rate (BER) performance is analyzed. Then it is demonstrated that with offset QAM the orthogonality between subcarriers in FBMC-OQAM is preserved. Next, the roles of tail biting technique and circular convolution in GFDM are explained. An efficient implementation of GFDM is also described. Second, circular filterbank multicarrier offset QAM (CFBMC-OQAM), a technique which combines the block-based structure of GFDM and offset QAM of FBMC-OQAM, is presented. Then a precoded scheme is proposed, in which the Walsh-Hadamard (WH) transform is applied to CFBMC-OQAM system, resulting in a precoded scheme called WH-CFBMC-OQAM. The proposed system has a block-based structure and can be implemented efficiently using fast Fourier transform (FTT) and inverse FFT (IFFT). In addition, a cyclic prefix can be inserted to facilitate simple equalization at the receiver. WH-CFBMC-OQAM exploits the frequency diversity by averaging the signal-to-noise ratios (SNRs) over all subcarriers. A theoretical approximation for the bit error rate performance of WH-CFBMC-OQAM over a frequency-selective channel is derived. Under the same system configuration, simulation results demonstrate the excellent performance of the proposed scheme when compared to the performance of other techniques. Simulation also verifies that the theoretical results match perfectly with simulation results for any SNR value
    • …
    corecore