822 research outputs found

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    Reducing the number of evaluations required for CGDA execution through Particle Swarm Optimization methods

    Get PDF
    Proceedings of: 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 26-28 April 2017, Coimbra, Portugal.Continuous Goal Directed Actions (CGDA) is a robot learning framework that encodes actions as time series of object and environment scalar features. As the execution of actions is not encoded explicitly, robot joint trajectories are computed through Evolutionary Algorithms (EA), which require a large number of evaluations. The consequence is that evaluations are performed in a simulated environment, and the optimal robot trajectory computed is then transferred to the actual robot. This paper focuses on reducing the number of evaluations required for computing an optimal robot joint trajectory. Particle Swarm Optimization (PSO) methods have been adapted to the CGDA framework to be studied and compared: naíve PSO, Adaptive Fuzzy Fitness Granulation PSO (AFFG-PSO), and Fitness Inheritance PSO (FI-PSO). Experiments have been performed for two representative use cases within CGDA: the “wax” and the “painting” action. The experimental results of PSO methods are compared with those obtained with the Steady State Tournament used in the original proposal of CGDA. Conclusions extracted from these results depict a reduction of the number of required evaluations, with simultaneous tradeoff regarding the degree of fulfillment of the objective given by the optimization cost function.The research leading to these results has received funding from the RoboCity2030-III-CM project (Robtica aplicada a la mejora de la calidad de vida de los ciudadanos, fase Ill; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU, and by a FPU grant funded by Miniesterio de Educaci6n, Cultura y deporte

    Real Evaluations Tractability using Continuous Goal-Directed Actions in Smart City Applications

    Get PDF
    One of the most important challenges of Smart City Applications is to adapt the system to interact with non-expert users. Robot imitation frameworks aim to simplify and reduce times of robot programming by allowing users to program directly through action demonstrations. In classical robot imitation frameworks, actions are modelled using joint or Cartesian space trajectories. They accurately describe actions where geometrical characteristics are relevant, such as fixed trajectories from one pose to another. Other features, such as visual ones, are not always well represented with these pure geometrical approaches. Continuous Goal-Directed Actions (CGDA) is an alternative to these conventional methods, as it encodes actions as changes of any selected feature that can be extracted from the environment. As a consequence of this, the robot joint trajectories for execution must be fully computed to comply with this feature-agnostic encoding. This is achieved using Evolutionary Algorithms (EA), which usually requires too many evaluations to perform this evolution step in the actual robot. The current strategies involve performing evaluations in a simulated environment, transferring only the final joint trajectory to the actual robot. Smart City applications involve working in highly dynamic and complex environments, where having a precise model is not always achievable. Our goal is to study the tractability of performing these evaluations directly in a real-world scenario. Two different approaches to reduce the number of evaluations using EA, are proposed and compared. In the first approach, Particle Swarm Optimization (PSO)-based methods have been studied and compared within the CGDA framework: naïve PSO, Fitness Inheritance PSO (FI-PSO), and Adaptive Fuzzy Fitness Granulation with PSO (AFFG-PSO).The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    GREEN-PSO: Conserving Function Evaluations in Particle Swarm Optimization

    Get PDF
    particle swarm optimization; swarm intelligence. In the Particle Swarm Optimization (PSO) algorithm, the expense of evaluating the objective function can make it difficult, or impossible, to use this approach effectively; reducing the number of necessary function evaluations would make it possible to apply the PSO algorithm more widely. Many function approximation techniques have been developed that address this issue, but an alternative to function approximation is function conservation. We describe GREEN-PSO (GR-PSO), an algorithm that, given a fixed number of function evaluations, conserves those function evaluations by probabilistically choosing a subset of particles smaller than the entire swarm on each iteration and allowing only those particles to perform function evaluations. The “surplus ” of function evaluations thus created allows a greater number of particles and/or iterations. In spite of the loss of information resulting from this more parsimonious use of function evaluations, GR-PSO performs as well as, or better than, the standard PSO algorithm on a set of six benchmark functions, both in terms of the rate of error reduction and the quality of the final solution.

    Evolutionary computation for expensive optimization: a survey

    Get PDF
    Expensive optimization problem (EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solution. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolutionary computation (EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solving EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computation. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, including the above three research directions and the real-world application part. Moreover, some future research directions are also discussed in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solving EOP and related real-world applications more efficiently

    Genetic based discrete particle swarm optimization for elderly day care center timetabling

    Get PDF
    The timetabling problem of local Elderly Day Care Centers (EDCCs) is formulated into a weighted maximum constraint satisfaction problem (Max-CSP) in this study. The EDCC timetabling problem is a multi-dimensional assignment problem, where users (elderly) are required to perform activities that require different venues and timeslots, depending on operational constraints. These constraints are categorized into two: hard constraints, which must be fulfilled strictly, and soft constraints, which may be violated but with a penalty. Numerous methods have been successfully applied to the weighted Max-CSP; these methods include exact algorithms based on branch and bound techniques, and approximation methods based on repair heuristics, such as the min-conflict heuristic. This study aims to explore the potential of evolutionary algorithms by proposing a genetic-based discrete particle swarm optimization (GDPSO) to solve the EDCC timetabling problem. The proposed method is compared with the min-conflict random-walk algorithm (MCRW), Tabu search (TS), standard particle swarm optimization (SPSO), and a guided genetic algorithm (GGA). Computational evidence shows that GDPSO significantly outperforms the other algorithms in terms of solution quality and efficiency

    Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics

    Get PDF
    During the last years, research in applying machine learning (ML) to design efficient, effective and robust metaheuristics became increasingly popular. Many of those data driven metaheuristics have generated high quality results and represent state-of-the-art optimization algorithms. Although various appproaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this paper we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various ways synergies which might be achieved. A detailed taxonomy is proposed according to the concerned search component: target optimization problem, low-level and high-level components of metaheuristics. Our goal is also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some open research issues in this topic which needs further in-depth investigations

    Large-scale optimization : combining co-operative coevolution and fitness inheritance

    Get PDF
    Large-scale optimization, here referring mainly to problems with many design parameters remains a serious challenge for optimization algorithms. When the problem at hand does not succumb to analytical treatment (an overwhelmingly common place situation), the engineering and adaptation of stochastic black box optimization methods tends to be a favoured approach, particularly the use of Evolutionary Algorithms (EAs). In this context, many approaches are currently under investigation for accelerating performance on large-scale problems, and we focus on two of those in this research. The first is co-operative co-evolution (CC), where the strategy is to successively optimize only subsets of the design parameters at a time, keeping the remainder fixed, with an organized approach to managing and reconciling these subspace optimization. The second is fitness inheritance (FI), which is essentially a very simple surrogate model strategy, in which, with some probability, the fitness of a solution is simply guessed to be a simple function of the finesses of that solution’s parents. Both CC and FI have been found successful on nontrivial and multiple test cases, and they use fundamentally distinct strategies. In this thesis, we explored the extent to which both of these strategies can be used to provide additional benefits. In addition to combining CC and FI, this thesis also introduces a new FI scheme which further improves the performance of CC-FI. We show that the new algorithm CC-FI is highly effective for solving problems, especially when the new FI scheme is used. In the thesis, we also explored two basic adaptive parameter setting strategies for the FI component. We found that engineering FI (and CC, where it was otherwise not present) into these algorithms led to good performance and results
    corecore