57 research outputs found

    Optimum graph cuts for pruning binary partition trees of polarimetric SAR images

    Get PDF
    This paper investigates several optimum graph-cut techniques for pruning binary partition trees (BPTs) and their usefulness for the low-level processing of polarimetric synthetic aperture radar (PolSAR) images. BPTs group pixels to form homogeneous regions, which are hierarchically structured by inclusion in a binary tree. They provide multiple resolutions of description and easy access to subsets of regions. Once constructed, BPTs can be used for a large number of applications. Many of these applications consist in populating the tree with a specific feature and in applying a graph cut called pruning to extract a partition of the space. In this paper, different pruning examples involving the optimization of a global criterion are discussed and analyzed in the context of PolSAR images for segmentation. Through the objective evaluation of the resulting partitions by means of precision-and-recall-for-boundaries curves, the best pruning technique is identified, and the influence of the tree construction on the performances is assessed.Peer ReviewedPostprint (author's final draft

    Speckle noise reduction in PolSAR images with binary partition tree

    Get PDF
    In some remote sensing applications such as PolSAR (Polarimetric Synthetic Aperture Radar), the use of Binary Partition Trees (BPTs) for Speckle Noise filtering schemes is currently gaining interest. In this thesis, a new approach using this representation is investigated: branch filtering. This approach consists in searching for each leaf its ancestors and selecting the one that best represents it, that is, the one that yields the lower error. A potentiality assessment is done to evaluate the margin of improvement that new techniques based on this approach may provide and describe the basic specifications of the algorithms based on it. After that, different new techniques are developed, analysed and compared against the State-of-the-Art. We point out the main strengths and weaknesses of each technique. Our main goal is to understand the behaviour of the filtered data along the BPT branch and interpret how this information can be used in the future for speckle noise reduction in PolSAR images. Finally some conclusions are drawn and some possible future lines of work are exposed and commented.En algunas aplicaciones de teledetección como Polarimetric SAR, el uso de Árboles de Decisión Binarios está ganando interés. En esta tésis se incorpora un nuevo método que usa esta representación: filtraje por ramas. Este método consiste en buscar para cada hoja sus antepasados y seleccionar el mejor nodo como el que de el menor error. Se lleva a cabo un análisis de potencialidad para evaluar el margen de mejora que nuevas técnicas basadas en este método podrían proporcionar y se describen los principios basicos de los algoritmos que se basan en él. Tras esto, se desenvolupan distintas técnicas y se comparan con las del estado del arte. De cada técnica, destacamos sus principales fortalezas y debilidades. Nuestro objetivo principal es entender el comportamiento de los datos filtrados a lo largo de la rama del BPT e interpretar como podemos usar esta información en un futuro para la reducción de ruido especular (speckle) en imágenes PolSAR. Por último, se exponen algunas conclusiones y se presentan y comentan algunas posibles líneas de trabajo futuras.En algunes aplicacions de teledetecció com Polarimetric SAR, l'ús d'Arbres de Particio Binària està guanyant interès. En aquesta tesi, s'investiga un nou mètode que utilitza aquesta representació: filtratge per branques. Aquest mètode consisteix en buscar per cada fulla els seus avantpassats i seleccionar el millor node, és a dir, el que doni un error menor. Es duu a terme un analisi de potencialitat per evaluar el marge de millora que noves tècniques basades en aquest mètode podrien aportar i es descriuen els principis bàsics dels algorismes que s'hi basen. Després, es desenvolupen diverses tècniques i es comparen amb les de l'estat de l'art. Destaquem les principals fortalesses i feblesses de cada tècnica. El nostre principal objectiu és entendre el comportament de les dades filtrades al llarg de la branca del BPT i interpretar com podem utilitzar aquesta informació en un futur per la reducció del soroll especular (speckle) en imatges PolSAR. Per últim s'exposen algunes conclusions i es proposen i comenten possibles noves línies de treball

    Multidimensional SAR data representation and processing based on Binary Partition Trees

    Get PDF
    English: A novel multidimensional SAR data abstraction is presented, based on Binary Partition Trees (BPT). This data abstraction is employed for different applications, as data filtering and segmentation, change detection, etc. The BPT can be contructed from a Polarimetric SAR (PolSAR) image or from a serie of coregistered acquisitions, conforming a tool that enables the systematic exploitation of PolSAR datasets simultaneously in the space and time dimensions.Castellano: na nueva abstracción de datos SAR multidimensionales es presentada, basada en Árboles de Partición Binaria (BPT). Esta abstracción de datos se emplea para distintas aplicaciones, como filtrado, segmentación, detección de cambios, etc. El BPT puede construirse a partir de una imagen SAR polarimétrica o de una serie temporal de imágenes, siendo una herramienta que permite la explotación sistemática de sets de datos PolSAR simultáneamente en espacio y tiempo.Català: Una nova abstracció de dades SAR multidimensionals és presentada, basada en Arbres de Partició Binària (BPT). Aquesta abstracció de dades s'empra per a diferents aplicacions, com filtrat, segmentació, detecció de canvis, etc. El BPT es pot construir a partir d'una imatge SAR polarimètrica o d'una sèrie temporal d'imatges, sent una eina que permet l'explotació sistemàtica de sets de dades PolSAR simultàniament en espai i temps

    Multidimensional and temporal SAR data representation and processing based on binary partition trees

    Get PDF
    This thesis deals with the processing of different types of multidimensional SAR data for distinct applications. Instead of handling the original pixels of the image, which correspond to very local information and are strongly contaminated by speckle noise, a region-based and multiscale data abstraction is defined, the Binary Partition Tree (BPT). In this representation, each region stands for an homogeneous area of the data, grouping pixels with similar properties and making easier its interpretation and processing. The work presented in this thesis concerns the definition of the BPT structures for Polarimetric SAR (PolSAR) images and also for temporal series of SAR acquisitions. It covers the description of the corresponding data models and the algorithms for BPT construction and its exploitation. Particular attention has been paid to the speckle filtering application. The proposed technique has proven to achieve arbitrarily large regions over homogeneous areas while also preserving the spatial resolution and the small details of the original data. As a consequence, this approach has demonstrated an improvement in the performance of the target response estimation with respect to other speckle filtering techniques. Moreover, due to the flexibility and convenience of this representation, it has been employed for other applications as scene segmentation and classification. The processing of SAR time series has also been addressed, proposing different approaches for dealing with the temporal information of the data, resulting into distinct BPT abstractions. These representations have allowed the development of speckle filtering techniques in the spatial and temporal domains and also the improvement and the definition of additional methods for classification and temporal change detection and characterization

    PolSAR Time Series Processing With Binary Partition Trees

    Full text link

    A survey of multiple classifier systems as hybrid systems

    Get PDF
    A current focus of intense research in pattern classification is the combination of several classifier systems, which can be built following either the same or different models and/or datasets building approaches. These systems perform information fusion of classification decisions at different levels overcoming limitations of traditional approaches based on single classifiers. This paper presents an up-to-date survey on multiple classifier system (MCS) from the point of view of Hybrid Intelligent Systems. The article discusses major issues, such as diversity and decision fusion methods, providing a vision of the spectrum of applications that are currently being developed

    Classifying multisensor remote sensing data : Concepts, Algorithms and Applications

    Get PDF
    Today, a large quantity of the Earth’s land surface has been affected by human induced land cover changes. Detailed knowledge of the land cover is elementary for several decision support and monitoring systems. Earth-observation (EO) systems have the potential to frequently provide information on land cover. Thus many land cover classifications are performed based on remotely sensed EO data. In this context, it has been shown that the performance of remote sensing applications is further improved by multisensor data sets, such as combinations of synthetic aperture radar (SAR) and multispectral imagery. The two systems operate in different wavelength domains and therefore provide different yet complementary information on land cover. Considering the increase in revisit times and better spatial resolutions of recent and upcoming systems like TerraSAR-X (11 days; up to1 m), Radarsat-2 (24 days; up to 3 m), or RapidEye constellation (up to 1 day; 5 m), multisensor approaches become even more promising. However, these data sets with high spatial and temporal resolution might become very large and complex. Commonly used statistical pattern recognition methods are usually not appropriate for the classification of multisensor data sets. Hence, one of the greatest challenges in remote sensing might be the development of adequate concepts for classifying multisensor imagery. The presented study aims at an adequate classification of multisensor data sets, including SAR data and multispectral images. Different conventional classifiers and recent developments are used, such as support vector machines (SVM) and random forests (RF), which are well known in the field of machine learning and pattern recognition. Furthermore, the impact of image segmentation on the classification accuracy is investigated and the value of a multilevel concept is discussed. To increase the performance of the algorithms in terms of classification accuracy, the concept of SVM is modified and combined with RF for optimized decision making. The results clearly demonstrate that the use of multisensor imagery is worthwhile. Irrespective of the classification method used, classification accuracies increase by combining SAR and multispectral imagery. Nevertheless, SVM and RF are more adequate for classifying multisensor data sets and significantly outperform conventional classifier algorithms in terms of accuracy. The finally introduced multisensor-multilevel classification strategy, which is based on the sequential use of SVM and RF, outperforms all other approaches. The proposed concept achieves an accuracy of 84.9%. This is significantly higher than all single-source results and also better than those achieved on any other combination of data. Both aspects, i.e. the fusion of SAR and multispectral data as well as the integration of multiple segmentation scales, improve the results. Contrary to the high accuracy value by the proposed concept, the pixel-based classification on single-source data sets achieves a maximal accuracy of 65% (SAR) and 69.8% (multispectral) respectively. The findings and good performance of the presented strategy are underlined by the successful application of the approach to data sets from a second year. Based on the results from this work it can be concluded that the suggested strategy is particularly interesting with regard to recent and future satellite missions

    Factors influencing the accuracy of remote sensing classifications: a comparative study

    Get PDF
    Within last 20 years, a number of methods have been employed for classifying remote sensing data, including parametric methods (e.g. the maximum likelihood classifier) and non-parametric classifiers (such as neural network classifiers).Each of these classification algorithms has some specific problems which limits its use. This research studies some alternative classification methods for land cover classification and compares their performance with the well established classification methods. The areas selected for this study are located near Littleport (Ely), in East Anglia, UK and in La Mancha region of Spain. Images in the optical bands of the Landsat ETM+ for year 2000 and InSAR data from May to September of 1996 for UK area, DAIS hyperspectral data and Landsat ETM+ for year 2000 for Spain area are used for this study. In addition, field data for the year 1996 were collected from farmers and for year 2000 were collected by field visits to both areas in the UK and Spain to generate the ground reference data set. The research was carried out in three main stages.The overall aim of this study is to assess the relative performance of four approaches to classification in remote sensing - the maximum likelihood, artificial neural net, decision tree and support vector machine methods and to examine factors which affect their performance in term of overall classification accuracy. Firstly, this research studies the behaviour of decision tree and support vector machine classifiers for land cover classification using ETM+ (UK) data. This stage discusses some factors affecting classification accuracy of a decision tree classifier, and also compares the performance of the decision tree with that of the maximum likelihood and neural network classifiers. The use of SVM requires the user to set the values of some parameters, such as type of kernel, kernel parameters, and multi-class methods as these parameters can significantly affect the accuracy of the resulting classification. This stage involves studying the effects of varying the various user defined parameters and noting their effect on classification accuracy. It is concluded that SVM perform far better than decision tree, maximum likelihood and neural network classifiers for this type of study. The second stage involves applying the decision tree, maximum likelihood and neural network classifiers to InSAR coherence and intensity data and evaluating the utility of this type of data for land cover classification studies. Finally, the last stage involves studying the response of SVMs, decision trees, maximum likelihood and neural classifier to different training data sizes, number of features, sampling plan, and the scale of the data used. The conclusion from the experiments presented in this stage is that the SVMs are unaffected by the Hughes phenomenon, and perform far better than the other classifiers in all cases. The performance of decision tree classifier based feature selection is found to be quite good in comparison with MNF transform. This study indicates that good classification performance depends on various parameters such as data type, scale of data, training sample size and type of classification method employed
    corecore