637 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    DVB-RCS return link radio resource management for broadband satellite systems using fade mitigation techniques at ka band

    Get PDF
    Current Broadband Satellite systems supporting DVB-RCS at Ku band have static physical layer in order not to complicate their implementation. However at Ka band frequencies and above an adaptive physical layer wherein the physical layer parameters are dynamically modified on a per user basis is necessary to counteract atmospheric attenuation. Satellite Radio Resource Management (RRM) at the Medium Access Control (MAC) layer has become an important issue given the emphasis placed on Quality of Service (QoS) provided to the Users. The work presented here tackles the problem of Satellite RRM for Broadband Satellite systems using DVB-RCS where a fully adaptive physical layer is envisaged at Ka band frequencies. The impact of adaptive physical layer and user traffic conditions on the MAC layer functions is analyzed and an algorithm is proposed for the RRM process. Various physical layer issues associated with the resource management problem are also analyzed

    Joint Use of On-board Reconfigurable Antenna Pattern and Adaptive Coding and Modulation in Satellite Communications at High Frequency Bands

    Get PDF
    The Telecommunication market is driven by the increasing need of the end users for multimedia services which require high data rates. Within the fixed satellite service, frequency bandwidths wide enough to carry such high data rates are to be found in Ka band (26-40 GHz), and Q/V bands (40-50 GHz). However, at Ka band and above, transmitted signals can be severely affected by tropospheric attenuation for substantial percentages of time, resulting in the degradation of the quality and of the availability of communication services. Fade Mitigation Techniques (FMTs) must be used to counteract these severe propagation impairments. In this thesis we explore the joint use of two of the most promising techniques, known as Reconfigurable Antenna and Adaptive Coding and Modulation, which up to now has been separately developed. Some of our accomplishments include, but are not limited to: a methodology to describe rain attenuation conditions for multiple users in large geographical areas, a tractable framework for the generation of correlated time series of rain attenuation for multiple receiving stations, the comparison of performance between fixed antenna systems and Reconfigurable Antenna system coupled with Adaptive Coding and Modulation

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture

    Use of V-band geostationary satellites to deliver multimedia services

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Proceedings of the Fourteenth NASA Propagation Experimenters Meeting (NAPEX 14) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Get PDF
    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX XIV was held on May 11, 1990, at the Balcones Research Centers, University of Texas, Austin, Texas. The meeting was organized into two technical sessions: Satellite (ACTS) and the Olympus Spacecraft, while the second focused on the fixed and mobile satellite propagation studies and experiments. Following NAPEX XIV, the ACTS Miniworkshop was held at the Hotel Driskill, Austin, Texas, on May 12, 1990, to review ACTS propagation activities since the First ACTS Propagation Studies Workshop was held in Santa Monica, California, on November 28 and 29, 1989

    New Antenna Array Architectures for Satellite Communications

    Get PDF

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world

    Chapter Antennas for Space Applications: A Review

    Get PDF
    It is well known that antennas are inevitable for wireless communication systems. After the launch of Sputnik-1 which was the first artificial satellite developed by USSR (Union of Soviet Socialist Republics), telecommunication technologies started to develop for space excessively. However, significance of the antennas as first or final RF-front end element has not been altered for the space communication systems. In this chapter, after introducing telecommunication and antenna technologies for space, which space environmental conditions are to be faced by these antennas are summarized. Then, frequency allocation that is a crucial design factor for antennas is explained and tabulated. And finally at the last part, different types of antennas used in different space missions are presented with their functional parameters and tasks
    • …
    corecore