8,053 research outputs found

    Brain-Switches for Asynchronous Brain−Computer Interfaces: A Systematic Review

    Get PDF
    A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    Motor processes in mental rotation

    Get PDF
    Much indirect evidence supports the hypothesis that transformations of mental images are at least in part guided by motor processes, even in the case of images of abstract objects rather than of body parts. For example, rotation may be guided by processes that also prime one to see results of a specific motor action. We directly test the hypothesis by means of a dual-task paradigm in which subjects perform the Cooper-Shepard mental rotation task while executing an unseen motor rotation in a given direction and at a previously learned speed. Four results support the inference that mental rotation relies on motor processes. First, motor rotation that is compatible with mental rotation results in faster times and fewer errors in the imagery task than when the two rotations are incompatible. Second, the angle through which subjects rotate their mental images, and the angle through which they rotate a joystick handle are correlated, but only if the directions of the two rotations are compatible. Third, motor rotation modifies the classical inverted V-shaped mental rotation response time function, favoring the direction of the motor rotation; indeed, in some cases motor rotation even shifts the location of the minimum of this curve in the direction of the motor rotation. Fourth, the preceding effect is sensitive not only to the direction of the motor rotation, but also to the motor speed. A change in the speed of motor rotation can correspondingly slow down or speed up the mental rotation

    Neural activation and functional connectivity during motor imagery of bimanual everyday actions

    Get PDF
    © 2012 Szameitat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI), however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.This study was funded by the Medical Research Council, UK (CEG 61501; Dr Sterr)

    Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    Get PDF
    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10% to 50%) of subjects are BCI-illiterate users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and ten healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately one minute). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r=-0.732, p<0.001), and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle) performance (r=0.641, p<0.001). Furthermore, the BCI-illiterate users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-illiterate users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-illiteracy phenomenon in stroke patients.National Natural Science Foundation of China (Grant No. 51620105002) National High Technology Research and Development Program (863 Program) of China (Grant No.2015AA020501

    The Hybrid BCI

    Get PDF
    Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a “brain switch”. For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system
    corecore