34 research outputs found

    X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies

    Get PDF
    X-ray photons attenuation characteristics for the two tellarite based glasses Bi2O3\u2013 B2O3\u2013 TeO2\u2013 TiO2 and PbO\u2013ZnO\u2013TeO2\u2013B2O3 have been investigated at dental diagnostic energies (between 30-80 keV) using Geant4 code and WinXcom software. The correlation coefficient (R2) is utilized to evaluate the extent to which Geant4 results are related to the WinXcom data. For the both series, R2 is close to 1 for all samples and this implies a perfect degree of association between the Geant4 and WinXcom data. The linear attenuation coefficient is proportionally increased with addition of TeO2 in both series, which implies that there is a decreasing tendency in the X-ray photon transmission corresponding with an increase in the TeO2 content in the glasses. The half value layer (HVL) decreases as the density increases and this decreasing is very notable at 70 and 80 keV. The maximum HVL for all samples occurs at 80 keV and this implies that the HVL gradually increases as the energy of the X-ray photons increase. Also, the increment of TO2 in the glasses (in both systems) leads to reduce the mean free path and BiTeTi6 and PbTeB6 samples have the lowest MFP. The MFP for both systems was compared with three heavy concretes and the comparison revealed that the selected systems can be utilized to fabricate protection masks used during diagnostic radiation of the head or oral cavity

    Multiple Assessments on the Gamma-Ray Protection Properties of Niobium-Doped Borotellurite Glasses: A Wide Range Investigation Using Monte Carlo Simulations

    Full text link
    In this study, the monotonic effect of Ta2O5 and ZrO2 in some selected borotellurite glasses was investigated in terms of their impact on gamma-ray-shielding competencies. Accordingly, three niobium-reinforced borotellurite glasses (S1: 75TeO2 + 15B2O3 + 10Nb2O5, S2: 75TeO2 + 15B2O3 + 9Nb2O5 + 1Ta2O5, and S3: 75TeO2 + 15B2O3 + 8Nb2O5 + 1Ta2O5 + 1ZrO2) were modelled in the general-purpose MCNPX Monte Carlo code. They have been defined as an attenuator sample between the point isotropic gamma-ray source and the detector in terms of determining their attenuation coefficients. To verify the MC results, attenuation coefficients were then compared with the Phy-X/PSD program data. Our findings clearly demonstrate that although some behavioral changes occurred in the shielding qualities, modest improvements occurred in the attenuation properties depending on the modifier variation and its magnitude. However, the replacement of 2% moles of Nb2O5 with 1% mole of Ta2O5 and 1% mole of ZrO2 provided significant improvements in both glass density and attenuation properties against gamma rays. Finally, the HVL values of the S3 sample were compared with some glass- and concrete-shielding materials and the S3 sample was reported for its outstanding properties. As a consequence of this investigation, it can be concluded that the indicated type of additive to be added to borotellurite glasses will provide some advantages, particularly when used in radiation fields, by increasing the shielding qualities moderately. © 2022 H. O. Tekin et al

    A comprehensive study on optical features, gamma photon buildup factors and neutron shielding capability of B2O3-SB2O3-LI2O-BI2O3 glasses

    Get PDF
    ABSTRACT. Linear, nonlinear optical properties, photon buildup factors, and neutron shielding capability of glasses with chemical composition (65-x)B2O3-10Sb2O3-25Li2O-xBi2O3, where x = 0 (BSLB0) – 20 (BSLB20) mol% with steps of 4 mol% were examined. Molar refractivity (Rmolar) and molar polarizability (αmolar) were increased as Bi2O3 content mol% increase in the examined BSLB-glasses. The values of metallization criterion (Mcriterion) confirmed that the BSLB-glasses were non-metallic materials. The static (εstatic) and optical (εoptical) dielectric constants having the same trend of the refractive index (noptical). Values of optical electronegativity (χ*) were reduced from 0.825 for BSLB0 (Bi2O3 = 0 mol%) glasses to 0.758 for BSLB20 (Bi2O3 = 20 mol%) glasses. The linear electric/dielectric susceptibility (χ(1)) increased from 0.370 to 0.397. The nonlinear optical susceptibility (χ3) and nonlinear refractive index n2optical were enhanced by increasing Bi2O3 content in the BSLB-glasses. The BSLB20 glasses presented the least exposure and energy absorption build-up factors (EBF and EABF) at all considered thickness. BSLB20 sample achieved the best fast neutron removal cross section ( ) shield among all glasses. The total stopping powers (TSP) follows the trend (TSP)BSLB0 < (TSP)BSLB4 < (TSP)BSLB8 < (TSP)BSLB12 < (TSP)BSLB16 < (TSP)BSLB20. The electron absorbing and hence shielding capacity of the BSLB-glasses improves as their Bi2O3 content increase.     KEY WORDS: Antimony lithium-borate glasses, Optical properties, Buildup factors, Neutron shielding   Bull. Chem. Soc. Ethiop. 2022, 36(4), 949-962.                                                                DOI: https://dx.doi.org/10.4314/bcse.v36i4.19                                                     &nbsp

    Transmission factors, mechanical, and gamma ray attenuation properties of barium-phosphate-tungsten glasses: Incorporation impact of WO3

    Full text link
    The purpose of this study is to conduct a thorough examination of the direct and indirect impacts of increasing the quantity of heavy WO3 on gamma-ray transmission, shielding and mechanical properties for some selected barium-phosphate-tungsten glasses. Accordingly, mechanical properties of barium-phosphate-tungsten oxides with chemical formula (50-x)P2O5-50BaO-xWO3 (x = 0.0(S1), 5.0(S2), 10(S3), and 15(S4)) mol% was evaluated using Makishima-Mackenzie model. Next, newly online Phy-X/PSD software and Monte Carlo code were used to examine the gamma radiation characteristics. Gamma-ray transmission factor (TF) values were calculated for S1, S2, S3 and, S4 glass samples for a range of well-known radioisotope energies such for 67Ga, 57Co-57, 111In-111, 133Ba, 201Tl, 99 mTc, 51Cr, 131I, 58Co, 137Cs, 60Co. The total packing density (Vt) was enhanced from 0.589 for S1 glass sample (free with WO3) to 0.605 for S4 glass sample (with highest WO3 =15 mol%). The total energy dissociation (Gt) of the investigated glasses was increased with increasing the WO3 content: from 51.7 (kJ/cm3) for S1 glasses to 52.45 (kJ/cm3) for S4 glasses. All mechanical moduli were improved with increasing the tungsten trioxide concentration in the studied glasses. Poisson's ratios were increased with increasing the WO3 concentration. The trend of linear (LAC) and mass attenuation (MAC) coefficients were followed as: (LAC, MAC) S1 < (LAC, MAC) S2 < (LAC, MAC) S3 < (LAC, MAC) S4. Half (HVL) and tenth (TVL) value layers have the trend as (HVL, TVL) S1 > (HVL, TVL) S2 > (HVL, TVL) S3 > (HVL, TVL) S4. The effective atomic number (Zeff) and electron density (Neff) have the same trend. The lowest transmission Factor (TF) values for all glass specimens were examined at a thickness of 3 cm. Furthermore, the S4 sample displayed the least transmission tendency across all glass thicknesses evaluated. © 2022 The AuthorsPrincess Nourah bint Abdul Rahman University Researchers Supporting Project Number (PNURSP2022R149)

    Effects of Ag NPs: Enhancement of mechanical properties of Er3+/Nd3+ codoped lithium niobate tellurite glass via ultrasonic measurement

    Get PDF
    Ag NPs embedded in Er3+/Nd3+ codoped lithium niobate tellurite glasses of the form (68-x)TeO2-15Li2CO3-15Nb2O5-1Er2O3-1Nd2O3-(x)AgCl with x = 1, 2 and 3 mol% via conventional melt-quenching technique. Surface roughness and mechanical properties of the glass sample are characterized and discussed. The ultrasonic attenuation shows the rate of sound energy reduction when an ultrasonic wave is propagating in a medium which is the lithium niobate tellurite glasses. The glass attenuation depends on the grain size, viscous friction, crystal structure, porosity, and hardness. The ultrasonic acoustic impedance and attenuation coefficient of particles are estimated from an analysis of the pulse-echo technique. Simple correlation functions and the accurate scattering theory include the effects of acoustic waves, were used separately to focus on the absorption and scattering effects from spherical particles (Ag NPs) and thereby describe the structures of the medium

    Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO)

    Full text link
    The influence of modifier oxides (TiO2, ZnO, BaO, and PbO) on the mechanical and radiation shielding properties of boro-tellurate glasses is investigated. Samples with a composition of B2O3-SrO-TeO2-RO (RO represents the modifier oxides) were fabricated using the melt quench method, and their physical, mechanical, and radiation attenuation parameters were reported. For this aim, Monte Carlo simulation was employed to predict the radiation attenuation parameters, while the Makishima-Mackenzie model was adopted to determine the mechanical properties. The tightly packed structure with better cross-linkage density is possessed by the Ti-containing glass (SBT-Ti) system among the titled glass batch. The higher Poisson and micro-hardness values of the SBT-Ti glass indicate its structure’s reduced free volume and better compactness. For the glass with PbO, the linear and mass attenuation coefficients are highly increased compared to those glasses doped with TiO2, ZnO, and BaO. The thinner half-value layer was reported at 0.015 MeV, taking values 0.006, 0.005, 0.004, and 0.002 for samples with TiO2, ZnO, BaO, and PbO, respectively. SBT-Pb sample (with PbO) has a thinner HVL compared to other fabricated glass samples. The fabricated glasses’ thickness (Deq) equivalent to 1 cm of lead (Pb) was reported. The results demonstrated that Deq is high at low energy and equals 11.62, 8.81, 7.61, 4.56 cm for SBT-Ti, SBT-Zn, SBT-Ba, and SBT-Pb glass samples, respectively. According to the Deq results, the fabricated glasses have a shielding capacity between 30 and 43% compared to the pure Pb at gamma-ray energy of 1.5 MeV. At high energy (8 MeV), the transmission factor values for a thickness of 1 cm of the fabricated samples reach 88.68, 87.83, 85.95, and 83.11% for glasses SBT-Ti, SBT-Zn, SBT-Ba, and SBT-Pb, respectively. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The authors acknowledge the support of Taif University Researchers Supporting Project number (TURSP-2020/127), Taif University, Taif, Saudi Arabia

    Novel Tellurite Glass (60-x)TeO2–10GeO2 -20ZnO–10BaO - xBi2O3 for Radiation Shielding

    Get PDF
    In this article, high dense glasses based heavy metal former and modifier have been synthesized. The glass system with composition formula of (60-x)TeO2–10GeO2 -20ZnO–10BaO - xBi2O3 (where x = 2.5, 5, 7.5, and 10 mol. %). The glasses have been produced using the usual melt, quenching, and annealing process. Many physical features were investigated. To confirm the amorphous nature of theses glasses, we examined the samples with X-ray diffraction in the range of between 10° and 80°. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) transmission spectrum for the current glass samples within the range of 400–1500 cm−1 has been recorded to study the behavior of the obtained glasses that is mixed between tellurium and germanium glass phase. To study the transparency and cut-off wavelength and other optical properties, Ultraviolet–Visible spectrometer (UV–Vis) was utilized between 200 and 800 nm. Radiation shielding ability of the (60-x) TeO2–10GeO2-20ZnO–10BaO-xBi2O3 glasses was examined. Monte Carlo simulation method was applied to estimate the shielding parameters for gamma photons with various energies varied in rang from 0.015 to 15 MeV. © 2020 Elsevier B.V.All Authors present their grateful acknowledge to the Universiti Putra Malaysia (UPM), for supporting this work by chemicals and services, which granted by UPM under IPB-9554200

    Structural, Optical, Magnetic and Photon Attenuation of Novel Potassium Lead Borate Glasses Doped with MnO

    Full text link
    Potassium lead borate glasses doped with MnO (40B2O3 + 40PbO + (20-x)K2O + xMnO: x = 0–5 mol%) have been prepared via standard melting quenching process. The impact of MnO on the structure, optical, magnetic and gamma-ray protection properties of pottisium lead borate glasses have been examined. The density was increased from 4.83to 5.23 g/cm3 as MnO content increased while the molar volume of prepared glass sample was decreased from 28.112 to 25.755 cm3/mol. The obtained direct optical gap (Eg) values were 2.84, 2.59, 2.41, 2.19, 1.95, and 1.84 eV for the Mn-x (x = 0, 1, 2, 3, 4, and 5) glass samples, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra demonstrated that as the MnO concentration increases in the glass network the intensity and width of the IR bands were increased. The magnetic measurement revealed that the magnetic saturation (Ms) was decreased while the magnetic coercivity (Hc) was increased with increasing MnO substitution ratio. The linear attenuation coefficient of the μMn-glass follows the order: µMn-0 < µMn-1 < µMn-2 < µMn-3 < µMn-4 < µMn-5. Half value layer (HVL) rises as µ decreases and vice versa. The range of the HVL is 0.002–3.378, 0.002–3.334, 0.002–3.291, 0.002–3.248, 0.002–3.176, and 0.002–3.106 cm for Mn-x (x = 0, 1, 2, 3, 4, and5). The trend of effective atomic number (Zeff) variation is related to that of both linear and mass attenuation coefficients (µ and µm). The produced Mn-glasses can be employed in a variety of optical, magnetic and radiation protective applications. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature

    Trivalent Ions and Their Impacts on Effective Conductivity at 300k and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for al, y, nd, sm, eu

    Full text link
    We aimed to determine the contribution of various trivalent ions like Al and rare-earths (Y, Nd, Sm, Eu) on resistance behaviors of different types of bismo-borate glasses. Accordingly, eight different bismuth borate glasses from the system: 40Bi2O3–59B2O3–1Tv2O3 (where Tv = Al, Y, Nd, Sm, and Eu) and three glasses of (40Bi2O3–60B2O3; 37.5Bi2O3–62.5B2O3; and 38Bi2O3–60B2O3– 2Al2O3) compositions were extensively investigated in terms of their nuclear attenuation shielding properties, along with effective conductivity and buildup factors. The Py-MLBUF online platform was also utilized for determination of some essential parameters. Next, attenuation coefficients, along with half and tenth value layers, have been determined in the 0.015 MeV–15 MeV photon energy range. Moreover, effective atomic numbers and effective atomic weight, along with exposure and energy absorption buildup factors, were determined in the same energy range. The result showed that the type of trivalent ion has a direct effect on behaviors of bismo-borate glasses against ionizing gamma-rays. As incident photon energy increases, the effective thermal conductivity decreases rapidly, especially in the low energy range, where photoelectric effects dominate the photon–matter interaction. Sample 8 had the minimum heat conductivity at low photon energies; our findings showed that Eu-reinforced bismo-borate glass composition, namely 40Bi2O3–59B2O3– 1Eu2O3, with a glass density of 6.328 g/cm3 had superior gamma-ray attenuation properties. These outcomes would be useful for the scientific community to observe the most suitable additive rareearth type and related glass composition for providing the aforementioned shielding properties, in terms of needs and utilization requirements. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The APC was covered by “Dunarea de Jos” University of Galati, Romania, through the grant no. RF3621/2021

    Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system

    Get PDF
    The current study aims to explore the shielding properties of multi-component borate-based glass series. Seven glass-samples with composition of (80-y)H3BO3–10ZnO–10Na2O–yBaO where (y = 0, 5, 10, 15, 20, 25 and 30 mol.%) were synthesized by melt-quench method. Various shielding features for photons, neutrons, and protons were determined for all prepared samples. XCOM, Phy-X program, and SRIM code were performed to determine and explain several shielding properties such as equivalent atomic number, exposure build-up factor, specific gamma-ray constants, effective removal cross-section (SR), neutron scattering and absorption, Mass Stopping Power (MSP) and projected range. The energy ranges for photons and protons were 0.015–15 MeV and 0.01–10 MeV, respectively. The mass attenuation coefficient (µ/?) was also determined experimentally by utilizing two radioactive sources (166Ho and 137Cs). Consistent results were obtained between experimental and XCOM values in determining µ/? of the new glasses. The addition of BaO to the glass matrix led to enhance the µ/? and specific gamma-ray constants of glasses. Whereas the remarkable reductions in SR, MSP, and projected range values were reported with increasing BaO concentrations. The acquired results nominate the use of these glasses in different radiation shielding purposes
    corecore