17 research outputs found

    Exact Weighted-FBP Algorithm for Three-Orthogonal-Circular Scanning Reconstruction

    Get PDF
    Recently, 3D image fusion reconstruction using a FDK algorithm along three-orthogonal circular isocentric orbits has been proposed. On the other hand, we know that 3D image reconstruction based on three-orthogonal circular isocentric orbits is sufficient in the sense of Tuy data sufficiency condition. Therefore the datum obtained from three-orthogonal circular isocentric orbits can derive an exact reconstruction algorithm. In this paper, an exact weighted-FBP algorithm with three-orthogonal circular isocentric orbits is derived by means of Katsevich's equations of filtering lines based on a circle trajectory and a modified weighted form of Tuy's reconstruction scheme

    Advanced capabilities for planar X-ray systems

    Get PDF
    Mención Internacional en el título de doctorThe past decades have seen a rapid evolution towards the use of digital detectors in radiology and a more flexible robotized movement of the system components, X-ray tube and detector. This evolution opened the possibility for incorporating advanced capabilities in these planar X-ray systems, and for providing new valuable diagnostic information compared to the previous technology. Some of the current challenges for radiography are to obtain more quantitative images and to reduce the inherent superposition of tissues because of the 2D nature of the technique. Dual energy radiography, based on the acquisition of two images at different source voltages, enables a separate characterization of soft tissue and bone structures. Its benefits over conventional radiography have been proven in different applications, since it improves information content without adding significant extra acquisition time or radiation dose. In a different direction, a really disruptive advance would be to obtain 3D imaging with systems designed just for planar images. The incorporation of tomographic capabilities into these systems would have to deal with the acquisition of a limited number of projections, with non-standard geometrical configurations. This thesis presents original contributions in these two directions: dual energy radiography and 3D imaging with X-ray systems designed for planar imaging. The work is framed in a line of research of the Biomedical Imaging and Instrumentation Group from the Bioengineering and Aerospace Department of University Carlos III de Madrid working jointly with the University Hospital Gregorio Marañón, focused on the advance of radiology systems. This research line is carried out in collaboration with the group of Computer Architecture, Communications and Systems (ARCOS), from the same university, the Imaging Research Laboratory (IRL) of the University of Washington and the research center CREATIS, France. The research has a clear focus on technology transfer to the industry through the company Sedecal, a Spanish multinational among the 10 best world companies in the medical imaging field. The first contribution of this thesis is a complete novel protocol to incorporate dual energy capabilities that enable quantitative planar studies. The proposal is based on the use of a preliminary calibration with a very simple and low-cost phantom formed by two parts that represent soft tissue and bone equivalent materials. This calibration is performed automatically with no strict placement requirements. Compared to current Dual-energy X-ray Absorptiometry (DXA) systems, 1) it provides real mass-thickness values directly, enabling quantitative planar studies instead of relative comparisons, and 2) it is based on an automatic preliminary calibration without the need of interaction of an experienced technician. The second contribution is a novel protocol for the incorporation of tomographic capabilities into X-ray systems originally intended for planar imaging. For this purpose, we faced three main challenges. First, the geometrical trajectory of equipment follows non-standard circular orbits, thus posing severe difficulties for reconstruction. To handle this, the proposed protocol comprises a new geometrical calibration procedure that estimates all the system parameters per-projection. Second, the reconstruction of a limited number of projections from a reduced angular span leads to severe artifacts when using conventional reconstruction methods. To deal with these limited-view data, the protocol includes a novel advanced reconstruction method that incorporates the surface information of the sample, which can be extracted with a 3D light surface scanner. These data are introduced as an imposed constraint following the Split Bregman formulation. The restriction of the search space by exploiting the surface-based support becomes crucial for a complete recovery of the external contour of the sample and surroundings when the angular span is extremely reduced. The modular, efficient and flexible design followed for its implementation allows for the reconstruction of limited-view data with non-standard trajectories. Third, the optimization of the acquisition protocols has not yet explored with these systems. This thesis includes a study of the optimum acquisition protocols that allowed us to identify the possibilities and limitations of these planar systems. Using the surface-constrained method, it is possible to reduce the total number of projections up to 33% and the angular span down to 60 degrees. The contributions of this thesis open the way to provide depth and quantitative information very valuable for the improvement of radiological diagnosis. This could impact considerably the clinical practice, where conventional radiology is still the imaging modality most used, accounting for 80-90% of the total medical imaging exams. These advances open the possibility of new clinical applications in scenarios where 1) the reduction of the radiation dose is key, such as lung cancer screening or Pediatrics, according to the ALARA criteria (As Low As Reasonably Achievable), 2) a CT system is not usable due to movement limitations, such as during surgery or in an ICU and 3) where costs issues complicate the availability of CT systems, such as rural areas or underdeveloped countries. The results of this thesis has a clear application in the industry, since it is part of a proof of concept of the new generation of planar X-ray systems that will be commercialized worldwide by the company SEDECAL (Madrid, Spain).Los últimos años están viendo un rápido avance de los sistemas de radiología hacia el uso de detectores digitales y a una mayor flexibilidad de movimientos de los principales componentes del sistema, el tubo de rayos X y el detector. Esta evolución abre la posibilidad de incorporar capacidades avanzadas en sistemas de imagen plana por rayos X proporcionando nueva información valiosa para el diagnóstico. Dos retos en radiografía son obtener imágenes cuantitativas y reducir la superposición de tejidos debida a la naturaleza proyectiva de la técnica. La radiografía de energía dual, basada en la adquisición de dos imágenes a diferente kilovoltaje, permite obtener imágenes de tejido blando y hueso por separado. Los beneficios de esta técnica que aumenta la cantidad de información sin añadir un tiempo de adquisición o de dosis de radiación extra significativos frente al uso de radiografía convencional, han sido demostrados en diferentes aplicaciones. En otra dirección, un avance realmente disruptivo sería la obtención de imagen 3D con sistemas diseñados únicamente para imagen plana. La incorporación de capacidades tomográficas en estos sistemas tendría que lidiar con la adquisición de un número limitado de proyecciones siguiendo trayectorias no estándar. Esta tesis presenta contribuciones originales en esas dos direcciones: radiografía de energía dual e imagen 3D con sistemas de rayos X diseñados para imagen plana. El trabajo se encuadra en una línea de investigación del grupo de Imagen Biomédica e Instrumentación del Departamento de Bioingeniería e Ingeniería Aerospacial de la Universidad Carlos III de Madrid junto con el Hospital Universitario Gregorio Marañon, centrada en el avance de sistemas de radiología. Esta línea de investigación se desarollada en colaboración con el grupo Computer Architecture, Communications and Systems (ARCOS), de la misma universidad, el grupo Imaging Research Laboratory (IRL) de la Universidad de Washington y el centro de investigación CREATIS, de Francia. Se trata de una línea de investigación con un claro enfoque de transferencia tecnológica a la industria a través de la compañía SEDECAL, una multinacional española de entre las 10 líderes del mundo en el campo de la radiología. La primera contribución de esta tesis es un protocolo completo para incorporar capacidades de energía dual que permitan estudios cuantitativos de imagen plana. La propuesta se basa en una calibración previa con un maniquí simple y de bajo coste formado por dos materiales equivalentes de tejido blando y hueso respectivamente. Comparado con los sistemas actuales DXA (Dual-energy X-ray Absorptiometry), 1) proporciona valores reales de tejido atravesado, 2) se basa en una calibración automática que no requiere la interacción de un técnico con gran experiencia. La segunda contribución es un protocolo nuevo para la incorporación de capacidades tomográficas en sistemas de rayos X originariamente diseñados para imagen plana. Para ello, nos enfrentamos a tres principales dificultades. En primer lugar, las trayectorias que pueden seguir la fuente y el detector en estos sistemas no constituyen órbitas circulares estándares, lo que plantea retos importantes en la caracterización geométrica. Para solventarlo, el protocolo propuesto incluye una calibración geométrica que estima todos los parámetros geométricos del sistema para cada proyección. En segundo lugar, la reconstrucción de un número limitado de proyecciones adquiridas en un rango angular reducido da lugar a artefactos graves cuando se reconstruye con algoritmos convencionales. Para lidiar con estos datos de ángulo limitado, el protocolo incluye un nuevo método avanzado de reconstrucción que incorpora la información de superficie de la muestra, que se puede se obtener con un escáner 3D. Esta información se impone como una restricción siguiendo la formulación de Split Bregman, para compensar la falta de datos. La restricción del espacio de búsqueda a través de la explotación del soporte basado en superficie, es crucial para una recuperación completa del contorno externo de la muestra cuando el rango angular es extremadamente pequeño. El diseño modular, eficiente y flexible de la implementación propuesta permite reconstruir datos de ángulo limitado obtenidos con posiciones de fuente y detector no estándar. En tercer lugar, hasta la fecha, no se ha explorado la optimización del protocolo de adquisición con estos sistemas. Esta tesis incluye un estudio de los protocolos óptimos de adquisición que permitió identificar las posibilidades y limitaciones de estos sistemas de imagen plana. Gracias al método de reconstrucción basado en superficie, es posible reducir el número total de proyecciones hasta el 33% y el rango angular hasta 60 grados. Las contribuciones de esta tesis abren la posibilidad de proporcionar información de profundidad y cuantitativa muy valiosa para la mejora del diagnóstico radiológico. Esto podría impactar considerablemente en la práctica clínica, donde la radiología convencional es todavía la modalidad de imagen más utilizada, abarcando el 80- 90% del total de los exámenes de imagen médica. Estos avances abren la posibilidad de nuevas aplicaciones clínicas en escenarios donde 1) la reducción de la dosis de radiación es clave, como en screening de cáncer de pulmón, de acuerdo con el criterio ALARA (As Low As Reasonably Achievable), 2) no se puede usar un sistema TAC por limitaciones de movimiento como en cirugía o UCI, o 3) el coste limita la disponibilidad de sistemas TAC, como en zonas rurales o en países subdesarrollados. Los resultados de esta tesis presentan una clara aplicación industrial, ya que son parte de un prototipo de la nueva generación de sistemas planos de rayos X que serán distribuidos mundialmente por la compañía SEDECAL.This thesis has been developed as part of several research projects with public funding: - DPI2016-79075-R. ”Nuevos escenarios de tomografía por rayos X”, IP: Mónica Abella García, Ministerio de Economía y Competitividad, 01/01/2017-31/12/2019, 147.620 e. - ”Nuevos escenarios de tomografía por rayos X (NEXT) DPI2016-79075-R. Ministerio de Economía”, Industria y Competitividad. (Universidad Carlos III de Madrid). 30/12/2016-29/12/2019. 147.620 e. (…) - FP7-IMI-2012 (GA-115337), ”PreDict-TB: Model-based preclinical development of anti-tuberculosis drug combinations”. FP7-IMI - Seventh Framework Programme (EC-EFPIA). Unión Europea. (Universidad Carlos III de Madrid). 01/05/2012-31/10/2017. (…) - TEC2013-47270-R, ”Avances en Imagen Radiológica (AIR)”, Ministerio de Economía y Competitividad”, 01/01/2014-31/12/2016. IP: Mónica Abella Garcia and Manuel Desco Menéndez. 160.204 e (…) - RTC-2014-3028-1, ”Nuevos Escenarios Clínicos con Radiología Avanzada (NECRA)”, Ministerio de Economía y Competitividad, 01/06/2014-31/12/2016 IP: Mónica Abella García. 2014-2016. 219.458,96 e - IDI-20130301, ”Nuevo sistema integral de radiografía (INNPROVE: INNovative image PROcessing in medicine and VEterinary)”, IP: Mónica Abella García and Manuel Desco Menéndez. Ministerio de Economía y Competitividad. Subcontratación CDTI, 14/01/2013-31/03/2015. Total: 1.860.629e (UC3M: 325.000e). (Art. 83) - IPT-2012-0401-300000 INNPACTO 2012, ”Tecnologías para Procedimientos Intraoperatorios Seguros y Precisos. XIORT. MINECO. (Universidad Carlos III de Madrid). 01/01/2013-31/12/2015.Programa Oficial de Doctorado en Ingeniería MatemáticaPresidente: Doménec Ros Puig.- Secretario: Cyril Riddell.- Vocal: Yannick Boursie

    Improvements in four-dimensional and dual energy computed tomography

    Get PDF
    Dual energy and 4D computed tomography (CT) seek to address some of the limitations in traditional CT imaging. Dual energy CT, among other purposes, allows for the quantification and improved visualization of contrast materials, and 4D CT is often used in radiation therapy applications as it allows for the visualization and quantification of object motion. While much research has been done with these technologies, areas remain for potential improvement, both in preclinical and clinical settings, which will be explored in this dissertation. Preclinical dual energy cone-beam CT (CBCT) can benefit from wider separation between the peak energy of the two energy spectra. Using simulations and an x-ray source with a wide kVp range the contrast to noise ratio and Iodine concentration accuracy and precision were determined from Iodine material images. Improvements of 80% in CNR and 58% in precision were observed in the optimal energy pair of 60kVp/200kVp compared to a standard energy pair of 80kVp/140kVp. In 4D imaging, using projection data to obtain the required respiratory signal (“data driven”) can reduce setup complexity and cost of preclinical respiratory monitoring and reduce clinical 4D CT artifacts. Several clinical data driven 4D CBCT methods were modified for mice. Errors in projection sorting were within 4% of a breathing phase and were statistically less than the previous method for data driven 4D CBCT in mice. In clinical 4D CT, semi-automatically drawn target volumes and artifacts were compared between data driven and standard 4D CT images. Target volumes were shown to be statistically at least as large as standard contours, and artifacts were significantly reduced using the data driven technique. 4D CBCT is promising for use in evaluating tumor motion immediately prior to radiation treatment, but suffers from under sampling artifacts. An iterative volume of interest based reconstruction (I4D VOI) that aims to reduce artifacts without increases in computation time was compared to several other reconstruction techniques using a long scan patient data set. No statistical difference in tumor motion error was observed between I4D VOI and any of the other reconstruction methods. However, potential improvement over non-iterative VOI was demonstrated and computation time was reduced compared to TV minimization

    Image-Guided Interventions Using Cone-Beam CT: Improving Image Quality with Motion Compensation and Task-Based Modeling

    Get PDF
    Cone-beam CT (CBCT) is an increasingly important modality for intraoperative 3D imaging in interventional radiology (IR). However, CBCT exhibits several factors that diminish image quality — notably, the major challenges of patient motion and detectability of low-contrast structures — which motivate the work undertaken in this thesis. A 3D–2D registration method is presented to compensate for rigid patient motion. The method is fiducial-free, works naturally within standard clinical workflow, and is applicable to image-guided interventions in locally rigid anatomy, such as the head and pelvis. A second method is presented to address the challenge of deformable motion, presenting a 3D autofocus concept that is purely image-based and does not require additional fiducials, tracking hardware, or prior images. The proposed method is intended to improve interventional CBCT in scenarios where patient motion may not be sufficiently managed by immobilization and breath-hold, such as the prostate, liver, and lungs. Furthermore, the work aims to improve the detectability of low-contrast structures by computing source–detector trajectories that are optimal to a particular imaging task. The approach is applicable to CBCT systems with the capability for general source–detector positioning, as with a robotic C-arm. A “task-driven” analytical framework is introduced, various objective functions and optimization methods are described, and the method is investigated via simulation and phantom experiments and translated to task-driven source–detector trajectories on a clinical robotic C-arm to demonstrate the potential for improved image quality in intraoperative CBCT. Overall, the work demonstrates how novel optimization-based imaging techniques can address major challenges to CBCT image quality

    IMAGE-BASED RESPIRATORY MOTION EXTRACTION AND RESPIRATION-CORRELATED CONE BEAM CT (4D-CBCT) RECONSTRUCTION

    Get PDF
    Accounting for respiration motion during imaging helps improve targeting precision in radiation therapy. Respiratory motion can be a major source of error in determining the position of thoracic and upper abdominal tumor targets during radiotherapy. Thus, extracting respiratory motion is a key task in radiation therapy planning. Respiration-correlated or four-dimensional CT (4DCT) imaging techniques have been recently integrated into imaging systems for verifying tumor position during treatment and managing respiration-induced tissue motion. The quality of the 4D reconstructed volumes is highly affected by the respiratory signal extracted and the phase sorting method used. This thesis is divided into two parts. In the first part, two image-based respiratory signal extraction methods are proposed and evaluated. Those methods are able to extract the respiratory signals from CBCT images without using external sources, implanted markers or even dependence on any structure in the images such as the diaphragm. The first method, called Local Intensity Feature Tracking (LIFT), extracts the respiratory signal depending on feature points extracted and tracked through the sequence of projections. The second method, called Intensity Flow Dimensionality Reduction (IFDR), detects the respiration signal by computing the optical flow motion of every pixel in each pair of adjacent projections. Then, the motion variance in the optical flow dataset is extracted using linear and non-linear dimensionality reduction techniques to represent a respiratory signal. Experiments conducted on clinical datasets showed that the respiratory signal was successfully extracted using both proposed methods and it correlates well with standard respiratory signals such as diaphragm position and the internal markers’ signal. In the second part of this thesis, 4D-CBCT reconstruction based on different phase sorting techniques is studied. The quality of the 4D reconstructed images is evaluated and compared for different phase sorting methods such as internal markers, external markers and image-based methods (LIFT and IFDR). Also, a method for generating additional projections to be used in 4D-CBCT reconstruction is proposed to reduce the artifacts that result when reconstructing from an insufficient number of projections. Experimental results showed that the feasibility of the proposed method in recovering the edges and reducing the streak artifacts

    Optimizing Respiratory Gated Intensity Modulated Radiation Therapy Planning and Delivery of Early-Stage Non-Small Cell Lung Cancer

    Get PDF
    Stereotactic ablative body radiotherapy (SABR) is the standard of care for inoperable early-stage non-small cell lung cancer (NSCLC) patients. However, thoracic tumours are susceptible to respiratory motion and, if unaccounted for, can potentially lead to dosimetric uncertainties. Respiratory gating is one method that limits treatment delivery to portions of the respiratory cycle, but when combined with intensity-modulated radiotherapy (IMRT), requires rigorous verification. The goal of this thesis is to optimize respiratory gated IMRT treatment planning and develop image-guided strategies to verify the dose delivery for future early-stage NSCLC patients. Retrospective treatment plans were generated for various IMRT delivery techniques, including fixed-beam, volumetric modulated arc therapy (VMAT), and helical tomotherapy. VMAT was determined the best technique for optimizing dose conformity and efficiency. A second treatment planning study that considered patients exhibiting significant tumour motion was conducted. Respiratory ungated and gated VMAT plans were compared. Significant decreases in V20Gy and V50%, predictors for radiation pneumonitis and irreversible fibrosis, respectively, were observed. The predominant uncertainty of respiratory gating lies in the ability of an external surrogate marker to accurately predict internal target motion. Intrafraction triggered kV imaging was validated in a programmable motion phantom study as a method to determine how correlated the internal and external motion are during ungated and gated VMAT deliveries and to identify potential phase shifts between the motions. KV projections acquired during gated VMAT delivery were used to reconstruct gated cone-beam CT (CBCT), providing 3D tumour position verification. Image quality and target detectability, in the presence of MV scatter from the treatment beam to the kV detector, was evaluated with various imaging parameters and under real-patient breathing motion conditions. No significant difference in image quality was observed for the CBCT acquisitions with or without the presence of MV scatter. This thesis explores the benefits of combining respiratory gating with IMRT/VMAT for the treatment of early stage NSCLC with SABR, and evaluates advanced on-board imaging capabilities to develop dose delivery verification protocols. The results of this thesis will provide the tools necessary to confidently implement a respiratory gated radiotherapy program aimed at improving the therapeutic ratio for early-stage NSCLC

    IMPROVED IMAGE QUALITY IN CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED INTERVENTIONS

    Get PDF
    In the past few decades, cone-beam computed tomography (CBCT) emerged as a rapidly developing imaging modality that provides single rotation 3D volumetric reconstruction with sub-millimeter spatial resolution. Compared to the conventional multi-detector CT (MDCT), CBCT exhibited a number of characteristics that are well suited to applications in image-guided interventions, including improved mechanical simplicity, higher portability, and lower cost. Although the current generation of CBCT has shown strong promise for high-resolution and high-contrast imaging (e.g., visualization of bone structures and surgical instrumentation), it is often believed that CBCT yields inferior contrast resolution compared to MDCT and is not suitable for soft-tissue imaging. Aiming at expanding the utility of CBCT in image-guided interventions, this dissertation concerns the development of advanced imaging systems and algorithms to tackle the challenges of soft-tissue contrast resolution. The presented material includes work encompassing: (i) a comprehensive simulation platform to generate realistic CBCT projections (e.g., as training data for deep learning approaches); (ii) a new projection domain statistical noise model to improve the noise-resolution tradeoff in model-based iterative reconstruction (MBIR); (iii) a novel method to avoid CBCT metal artifacts by optimization of the source-detector orbit; (iv) an integrated software pipeline to correct various forms of CBCT artifacts (i.e., lag, glare, scatter, beam hardening, patient motion, and truncation); (v) a new 3D reconstruction method that only reconstructs the difference image from the image prior for use in CBCT neuro-angiography; and (vi) a novel method for 3D image reconstruction (DL-Recon) that combines deep learning (DL)-based image synthesis network with physics-based models based on Bayesian estimation of the statical uncertainty of the neural network. Specific clinical challenges were investigated in monitoring patients in the neurological critical care unit (NCCU) and advancing intraoperative soft-tissue imaging capability in image-guided spinal and intracranial neurosurgery. The results show that the methods proposed in this work substantially improved soft-tissue contrast in CBCT. The thesis demonstrates that advanced imaging approaches based on accurate system models, novel artifact reduction methods, and emerging 3D image reconstruction algorithms can effectively tackle current challenges in soft-tissue contrast resolution and expand the application of CBCT in image-guided interventions

    DEEP LEARNING IN COMPUTER-ASSISTED MAXILLOFACIAL SURGERY

    Get PDF

    New Methods for Motion Management During Radiation Therapy

    Get PDF
    In this thesis, a number of new image-based techniques for the management of intrafractional motion during radiation therapy are presented. Intra-fractional motion describes all kinds of anatomy changes - most prominently respiration - that occur during a single treatment session. Spatially confining the radiation dose to the tumour tissue and thus sparing surrounding healthy tissue is assumed to be crucial for a successful treatment with limited side effects. Unfortunately, the delivery of dose distributions that are sharply confined to the tumour is greatly complicated by patient motion. If not accounted for, this motion will lead to a smearing out of the original dose distribution and will facilitate the redistribution of dose from tumour to healthy tissue. Possible technical solutions for this issue include the interruption of the radiation delivery if the tumour leaves a predefined spatial ‘window’, and the reshaping of the treatment field ‘on-the-fly’ to follow the tumour. Regardless of which delivery techniques is selected, the patient motion needs to be reliably detected in real-time to allow for an adaptation of the treatment delivery. First, we present experimental results for a novel x-ray imaging system that is attached to the treatment delivery device and enables us to continuously monitor the tumour motion during treatment delivery with sub-mm accuracy, a latency better than 90 ms, and a 7 Hz update rate. Second, we present a Monte Carlo simulation for an improved amorphous-silicon flat-panel detector that reduced treatment beam filtration by 60% and long-range MV-scatter by 80%. We conclude this thesis by presenting results of an experimental demonstration of a novel dose-saving actively-triggered 4d cone-beam computed tomography device
    corecore