93 research outputs found

    Optimization of Three-Dimensional (3D) Multi-Sensor Models For Damage Assessment in Emergency Context: Rapid Mapping Experiences in the 2016 Italian Earthquake

    Get PDF
    Geomatics techniques offer the chance to manage very cost-effective solutions for three-dimensional (3D) modelling, from both the aerial and terrestrial point of view, with the help of range and image-based sensors. 3D spatial data that is based on integrated documentation techniques, featured by a very high-scale and an accurate metric and radiometric information nowadays are proposed here as metric databases that are applicable for assisting the operative fieldwork in the case of rapid mapping strategies. In sudden emergency contexts for damage and risk assessment, the structural consolidation and the security measures operations meet the problem of the danger and accessibility constraints of areas, for the operators, as well as to the tight deadlines needs in first aid. The use of Unmanned Aerial Vehicles (UAVs) equipped with cameras are more and more involved in aerial survey and reconnaissance missions; at the same time, the ZEB1 portable Light Detection and Ranging (LiDAR) mapping solution implemented in handle tools helped by Simultaneous Localization And Mapping (SLAM) algorithms can help for a quick preliminary survey. Both of these approaches that are presented here in the critical context of a post-seismic event, which is Pescara del Tronto (AP), deeply affected by the 2016-2017 earthquake in Central Italy. The Geomatics research group and the Disaster Recovery team (DIRECT—http://areeweb.polito.it/direct/) is working in collaboration with the Remotely Piloted Aircraft Systems (RPAS) group of the Italian Firefighter

    Integration the Low Cost Camera Images with the Google Earth Dataset to Create a 3D Model

    Get PDF
    As known Close range photogrammetry represents one of the most techniques to create precise 3D model. Metric camera, digital camera, and Laser scanning can be exploited for the photogrammetry with variety level of cost that may be high. In this study, the cost level is taken in to consideration to achieve balance between the cost and the obtained accuracy. This study aims to detect potential of low cost tools for creating 3D model in terms of obtained accuracy and details and comparing it with corresponding studies. Smart phone camera is the most available for everyone; this gave the motivation for use in this study. In addition, Google Earth was used to integrate the 3D model produced from all sides including the roof.  Then, two different types of the mobile camera were used in addition to the DSLR camera (Digital Single Lens Reflex) for comparison and analysis purposes. Thus, this research gave flexibility in work and low cost resulting from replacement the metric camera with the smart camera and the unmanned aerial vehicle (UAV) with Google Earth data. Mechanism of the work can be summarized in four steps. Firstly, photogrammetry planning to determine suitable baselines from object and location of targets that measured using GPS and Total station devices. Secondly, collect images using close range photogrammetry technique. Thirdly, processing step to create the 3D model and integrated with Google Earth images using the Agi Photoscan software. Finally, Comparative and evaluation stage to derive the accuracy and quality of the model obtained from this study using statistical analysis method. Regarding this Study, University of Baghdad, central library was selected as the case study. The results of this paper show that the low cost 3D model resulted from integrating  phone and Google Earth images gave suitable result with mean accuracy level reached to about less than 5 meters compared with DSLR camera result, this may be used for several applications such as  culture heritage and architecture documentation

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Effects of Short-Term Strains on Concrete Bulb-Tee Bridge Girders and Analysis of the Practicality of Using Three-Dimensional Models Based on Drone Imagery to Aid in Bridge Inspections

    Get PDF
    The University Transportation Center at Utah State University sponsors research through the Federal Highway Administration’s University Transportation Center Program. The purpose of this research is to advance technology and expertise in transportation-related fields. This includes research pertaining to bridge design, monitoring, and inspection (the focus of this research). The first focus area of this research monitored short-term strains at the bottom of girders in a concrete bulb-tee girder bridge. The strains were caused by traffic loading and recorded using strain transducers attached to the bottom of each bridge girder. Patterns in the strain loading were monitored to draw conclusions about the girder distribution factors and the maximum strains caused by various vehicle types. The largest loadings were evaluated and compared against the design loading. The second focus area of this research examined whether three-dimensional modeling software could create a bridge model of sufficient quality to be used as a supplementary aid in bridge inspections. This was done by capturing imagery of three bridges using a standard, commercially available drone. The imagery was then input into three different modeling programs, and the results were evaluated to determine their suitability

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    City-Scaled Digital Documentation: A Comparative Analysis of Digital Documentation Technologies for Recording Architectural Heritage

    Get PDF
    The historic preservation field, enabled by advances in technology, has demonstrated an increased interest in digitizing cultural heritage sites and historic structures. Increases in software capabilities as well as greater affordability has fostered augmented use of digital documentation technologies for architectural heritage applications. Literature establishes four prominent categories of digital documentation tools for preservation: laser scanning, photogrammetry, multimedia geographic information systems (GIS) and three-dimensional modeling. Thoroughly explored through published case studies, the documentation techniques for recording heritage are most often integrated. Scholarly literature does not provide a parallel comparison of the four technologies. A comparative analysis of the four techniques, as presented in this thesis, makes it possible for cities to understand the most applicable technique for their preservation objectives. The thesis analyzes four cases studies that employ applications of the technologies: New Orleans Laser Scanning, University of Maryland Photogrammetry, Historic Columbia Maps Project and the Virtual Historic Savannah Project. Following this, the thesis undertakes a trial of each documentation technology – laser scanning, photogrammetry, multimedia GIS and three-dimensional modeling – utilizing a block on Church Street between Queen and Chalmers streets within the Charleston Historic District. The apparent outcomes of each of the four techniques is analyzed according to a series of parameters including: audience, application, efficacy in recordation, refinement, expertise required, manageability of the product, labor intensity and necessary institutional capacity. A concluding matrix quantifies the capability of each of the technologies in terms of the parameters. This method furnishes a parallel comparison of the techniques and their efficacy in architectural heritage documentation within mid-sized cities

    3D structural characterization of outcrops by means of close-range multi-view stereo-photogrammetry

    Get PDF
    Image-based 3D modelling is increasingly used as a fast and cheap alternative to laser-scanning for the 3D digital representation of geological outcrops. This rapidly improving technique is progressively opening the way to the widespread use of virtual outcrop models in geology, as the technique allows nearly everybody to construct a detailed digital model of geological exposures simply using a few handy and cheap devices. In this dissertation, the photogrammetry method has been used to demonstrate and evaluate the potential of virtual outcrops in structural geology. In particular, through the analysis of different outcrops at different scales, I showed that virtual outcrop models enable a switch from a mere descriptive/qualitative analysis of the outcrops to a quantitative one. In fact, by mean of virtual reality it is possible to overcome almost all technical limitations that are generally encountered during field work at different scales including prospective distortion, inaccessibility and the lack of instruments for quantitative acquisition of data, among others

    Airborne laser sensors and integrated systems

    Get PDF
    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the development of such requirements, useful guidelines are provided for test and evaluation of airborne laser systems including laboratory, ground and flight test activities

    New strategies for row-crop management based on cost-effective remote sensors

    Get PDF
    Agricultural technology can be an excellent antidote to resource scarcity. Its growth has led to the extensive study of spatial and temporal in-field variability. The challenge of accurate management has been addressed in recent years through the use of accurate high-cost measurement instruments by researchers. However, low rates of technological adoption by farmers motivate the development of alternative technologies based on affordable sensors, in order to improve the sustainability of agricultural biosystems. This doctoral thesis has as main objective the development and evaluation of systems based on affordable sensors, in order to address two of the main aspects affecting the producers: the need of an accurate plant water status characterization to perform a proper irrigation management and the precise weed control. To address the first objective, two data acquisition methodologies based on aerial platforms have been developed, seeking to compare the use of infrared thermometry and thermal imaging to determine the water status of two most relevant row-crops in the region, sugar beet and super high-density olive orchards. From the data obtained, the use of an airborne low-cost infrared sensor to determine the canopy temperature has been validated. Also the reliability of sugar beet canopy temperature as an indicator its of water status has been confirmed. The empirical development of the Crop Water Stress Index (CWSI) has also been carried out from aerial thermal imaging combined with infrared temperature sensors and ground measurements of factors such as water potential or stomatal conductance, validating its usefulness as an indicator of water status in super high-density olive orchards. To contribute to the development of precise weed control systems, a system for detecting tomato plants and measuring the space between them has been developed, aiming to perform intra-row treatments in a localized and precise way. To this end, low cost optical sensors have been used and compared with a commercial LiDAR laser scanner. Correct detection results close to 95% show that the implementation of these sensors can lead to promising advances in the automation of weed control. The micro-level field data collected from the evaluated affordable sensors can help farmers to target operations precisely before plant stress sets in or weeds infestation occurs, paving the path to increase the adoption of Precision Agriculture techniques
    • …
    corecore