710 research outputs found

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Improving First-year Success and Retention through Interest-Based CS0 Courses

    Get PDF
    Many computer science programs suffer from low student retention rates. At Cal Poly San Luis Obispo, academic performance and retention rates among first year computer science students are among the lowest on campus. In order to remedy this, we have developed a new CS0 course featuring different tracks that students can choose from (e.g. robotics, gaming, music, mobile apps). This allows students to learn the basics of programming, teamwork, and college-level study in a domain that is of personal interest. In addition, the course relies on classic Project-based Learning (PBL) approaches as well as a focus on both academic and non-academic factors shown to increase student retention. Initial assessment demonstrates positive results in the form of increased academic performance in post CS0 courses and student retention

    Predicting Academic Performance: A Systematic Literature Review

    Get PDF
    The ability to predict student performance in a course or program creates opportunities to improve educational outcomes. With effective performance prediction approaches, instructors can allocate resources and instruction more accurately. Research in this area seeks to identify features that can be used to make predictions, to identify algorithms that can improve predictions, and to quantify aspects of student performance. Moreover, research in predicting student performance seeks to determine interrelated features and to identify the underlying reasons why certain features work better than others. This working group report presents a systematic literature review of work in the area of predicting student performance. Our analysis shows a clearly increasing amount of research in this area, as well as an increasing variety of techniques used. At the same time, the review uncovered a number of issues with research quality that drives a need for the community to provide more detailed reporting of methods and results and to increase efforts to validate and replicate work.Peer reviewe

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    A Study of Non-computing Majors\u27 Growth Mindset, Self-efficacy and Perceived CS Relevance in CS1

    Get PDF
    As the demand for programming skills in today’s job market is rapidly increasing for disciplines outside of computing, CS courses have experienced spikes in enrollment for non-majors. Students in disciplines including art, design and biological sciences are now often required to take introductory CS courses. Previous research has shown the role of growth mindset, self-efficacy and relevance in student success within CS but such metrics are largely unknown for non-majors. In this thesis, we surveyed non-majors in CS1 at Cal Poly, San Luis Obispo during the early and late weeks of the quarter to gain insights on their growth mindset, their self-efficacy and the perceived relevance of the course to their lives. In our analysis, we discovered that non-majors’ levels of growth mindset and of self-efficacy decreased throughout the duration of CS1 with additional differences by gender. However, non-majors largely found that the material covered in CS1 was highly relevant to their academic and professional careers despite being challenged by it. These findings provide important insights into the experiences of non-majors learning to code and can help better serve a more diverse population of students

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    Predicting and Improving Performance on Introductory Programming Courses (CS1)

    Get PDF
    This thesis describes a longitudinal study on factors which predict academic success in introductory programming at undergraduate level, including the development of these factors into a fully automated web based system (which predicts students who are at risk of not succeeding early in the introductory programming module) and interventions to address attrition rates on introductory programming courses (CS1). Numerous studies have developed models for predicting success in CS1, however there is little evidence on their ability to generalise or on their use beyond early investigations. In addition, they are seldom followed up with interventions, after struggling students have been identified. The approach overcomes this by providing a web-based real time system, with a prediction model at its core that has been longitudinally developed and revalidated, with recommendations for interventions which educators could implement to support struggling students that have been identified. This thesis makes five fundamental contributions. The first is a revalidation of a prediction model named PreSS. The second contribution is the development of a web-based, real time implementation of the PreSS model, named PreSS#. The third contribution is a large longitudinal, multi-variate, multi-institutional study identifying predictors of performance and analysing machine learning techniques (including deep learning and convolutional neural networks) to further develop the PreSS model. This resulted in a prediction model with approximately 71% accuracy, and over 80% sensitivity, using data from 11 institutions with a sample size of 692 students. The fourth contribution is a study on insights on gender differences in CS1; identifying psychological, background, and performance differences between male and female students to better inform the prediction model and the interventions. The final, fifth contribution, is the development of two interventions that can be implemented early in CS1, once identified by PreSS# to potentially improve student outcomes. The work described in this thesis builds substantially on earlier work, providing valid and reliable insights on gender differences, potential interventions to improve performance and an unsurpassed, generalizable prediction model, developed into a real time web-based system

    An Investigation of the Role Programming Support Services Have for Mature Students

    Get PDF
    [ES] Programming support services for introductory programmers have seen a rise in popularity in recent years with third level institutions around the world providing “safe spaces” for students to practice their programming skills and get supports without the risk of being judged by anyone. These services appear in many different structures including Support Centres, Software Studios and help desks. The common trend however is that all the users of these services, in general, report that the service has helped them in their studies and garnered them with more confidence in their ability. This paper examines the role which our Computer Science Centre played for students who attended the support service during an intensive higher diploma course. The intensive course is a 3-week course tailored to students who have previously completed a degree in a field not related to CS, and covers CS1 and CS2 material. The structure and design of the support service is outlined in this paper along with the supports offered. A high-level survey was conducted to investigate the effect of the service on students programming self-efficacy. Study design and methodology are described in detail. Early findings suggest that the support services offered to these students improved their belief in their own programming ability which in turn improved their exam grade outcome. The findings provide valuable evidence to justify future research into the functions of support services with the computer science domain.Nolan, K.; Thompson, A.; Noone, M.; Mooney, A. (2020). An Investigation of the Role Programming Support Services Have for Mature Students. En 6th International Conference on Higher Education Advances (HEAd'20). Editorial Universitat Politècnica de València. (30-05-2020):625-633. https://doi.org/10.4995/HEAd20.2020.11118OCS62563330-05-202

    Brave New World: Can We Engineer a Better Start for Freshers?

    No full text
    Abstract - The crucial importance of first experiences in shaping future success has been widely acknowledged. Creating the best foundations in large cohorts of students from diverse backgrounds presents special problems of its own. But a secure foundation can enhance student achievement and improve retention – and the students may even have fun too. Research has suggested that building learning communities can enhance student engagement and achievement. This paper examines how introducing non-technical activities can establish sound foundations for a university career by a) addressing objectives in the wider curriculum and b) promoting non-technical skills and experience of group working. A set of changes introduced to five degree cohorts in our academic school were designed to complement enhancements to our technical curriculum introduced during many years of debate and consideration. The changes have impacted upon generic and technical educational experiences. The paper presents an evaluation of the programme of changes through two iterations from the perspective of both faculty and student
    corecore