252 research outputs found

    Enhanced independent vector analysis for audio separation in a room environment

    Get PDF
    Independent vector analysis (IVA) is studied as a frequency domain blind source separation method, which can theoretically avoid the permutation problem by retaining the dependency between different frequency bins of the same source vector while removing the dependency between different source vectors. This thesis focuses upon improving the performance of independent vector analysis when it is used to solve the audio separation problem in a room environment. A specific stability problem of IVA, i.e. the block permutation problem, is identified and analyzed. Then a robust IVA method is proposed to solve this problem by exploiting the phase continuity of the unmixing matrix. Moreover, an auxiliary function based IVA algorithm with an overlapped chain type source prior is proposed as well to mitigate this problem. Then an informed IVA scheme is proposed which combines the geometric information of the sources from video to solve the problem by providing an intelligent initialization for optimal convergence. The proposed informed IVA algorithm can also achieve a faster convergence in terms of iteration numbers and better separation performance. A pitch based evaluation method is defined to judge the separation performance objectively when the information describing the mixing matrix and sources is missing. In order to improve the separation performance of IVA, an appropriate multivariate source prior is needed to better preserve the dependency structure within the source vectors. A particular multivariate generalized Gaussian distribution is adopted as the source prior. The nonlinear score function derived from this proposed source prior contains the fourth order relationships between different frequency bins, which provides a more informative and stronger dependency structure compared with the original IVA algorithm and thereby improves the separation performance. Copula theory is a central tool to model the nonlinear dependency structure. The t copula is proposed to describe the dependency structure within the frequency domain speech signals due to its tail dependency property, which means if one variable has an extreme value, other variables are expected to have extreme values. A multivariate student's t distribution constructed by using a t copula with the univariate student's t marginal distribution is proposed as the source prior. Then the IVA algorithm with the proposed source prior is derived. The proposed algorithms are tested with real speech signals in different reverberant room environments both using modelled room impulse response and real room recordings. State-of-the-art criteria are used to evaluate the separation performance, and the experimental results confirm the advantage of the proposed algorithms

    Online source separation in reverberant environments exploiting known speaker locations

    Get PDF
    This thesis concerns blind source separation techniques using second order statistics and higher order statistics for reverberant environments. A focus of the thesis is algorithmic simplicity with a view to the algorithms being implemented in their online forms. The main challenge of blind source separation applications is to handle reverberant acoustic environments; a further complication is changes in the acoustic environment such as when human speakers physically move. A novel time-domain method which utilises a pair of finite impulse response filters is proposed. The method of principle angles is defined which exploits a singular value decomposition for their design. The pair of filters are implemented within a generalised sidelobe canceller structure, thus the method can be considered as a beamforming method which cancels one source. An adaptive filtering stage is then employed to recover the remaining source, by exploiting the output of the beamforming stage as a noise reference. A common approach to blind source separation is to use methods that use higher order statistics such as independent component analysis. When dealing with realistic convolutive audio and speech mixtures, processing in the frequency domain at each frequency bin is required. As a result this introduces the permutation problem, inherent in independent component analysis, across the frequency bins. Independent vector analysis directly addresses this issue by modeling the dependencies between frequency bins, namely making use of a source vector prior. An alternative source prior for real-time (online) natural gradient independent vector analysis is proposed. A Student's t probability density function is known to be more suited for speech sources, due to its heavier tails, and is incorporated into a real-time version of natural gradient independent vector analysis. The final algorithm is realised as a real-time embedded application on a floating point Texas Instruments digital signal processor platform. Moving sources, along with reverberant environments, cause significant problems in realistic source separation systems as mixing filters become time variant. A method which employs the pair of cancellation filters, is proposed to cancel one source coupled with an online natural gradient independent vector analysis technique to improve average separation performance in the context of step-wise moving sources. This addresses `dips' in performance when sources move. Results show the average convergence time of the performance parameters is improved. Online methods introduced in thesis are tested using impulse responses measured in reverberant environments, demonstrating their robustness and are shown to perform better than established methods in a variety of situations

    1999-2001 Course Catalog

    Get PDF
    1999-2001 Course Catalo

    1994-1996 Course Catalog

    Get PDF
    1994-1996 Course Catalo

    E-Learning

    Get PDF
    E-learning enables students to pace their studies according to their needs, making learning accessible to (1) people who do not have enough free time for studying - they can program their lessons according to their available schedule; (2) those far from a school (geographical issues), or the ones unable to attend classes due to some physical or medical restriction. Therefore, cultural, geographical and physical obstructions can be removed, making it possible for students to select their path and time for the learning course. Students are then allowed to choose the main objectives they are suitable to fulfill. This book regards E-learning challenges, opening a way to understand and discuss questions related to long-distance and lifelong learning, E-learning for people with special needs and, lastly, presenting case study about the relationship between the quality of interaction and the quality of learning achieved in experiences of E-learning formation

    1997-1999 Course Catalog

    Get PDF
    1997-1999 Course Catalo

    2016-2017 Course Catalog

    Get PDF
    2016-2017 Course Catalo

    2017-2018 Course Catalog

    Get PDF
    2017-2018 Course Catalo

    The 1995 NASA guide to graduate support

    Get PDF
    The future of the United States is in the classrooms of America and tomorrow's scientific and technological capabilities are derived from today's investments in research. In 1980, NASA initiated the Graduate Student Researchers Program (GSRP) to cultivate additional research ties to the academic community and to support promising students pursuing advanced degrees in science and engineering. Since then, approximately 1300 students have completed the program's requirements. In 1987, the program was expanded to include the Underrepresented Minority and Disabled Focus (UMDF) Component. This program was designed to increase participation of underrepresented groups in graduate study and research and, ultimately, in space science and aerospace technology careers. Approximately 270 minority students have completed the program's requirements while making significant contributions to the nation's aerospace efforts. Continuing to expand fellowship opportunities, NASA announced the Graduate Student Fellowships in Global Change Research in 1990. Designed to support the rapid growth in the study of earth as a system, more than 250 fellowships have been awarded. And, in 1992, NASA announced opportunities in the multiagency High Performance Computing and Communications (HPCC) Program designed to accelerate the development and application of massively parallel processing. Approximately five new fellowships will be awarded yearly. This booklet will guide you in your efforts to participate in programs for graduate student support

    1996-1998 Course Catalog

    Get PDF
    1996-1998 Course Catalo
    corecore