307 research outputs found

    Formal Relationships Between Geometrical and Classical Models for Concurrency

    Get PDF
    A wide variety of models for concurrent programs has been proposed during the past decades, each one focusing on various aspects of computations: trace equivalence, causality between events, conflicts and schedules due to resource accesses, etc. More recently, models with a geometrical flavor have been introduced, based on the notion of cubical set. These models are very rich and expressive since they can represent commutation between any bunch of events, thus generalizing the principle of true concurrency. While they seem to be very promising - because they make possible the use of techniques from algebraic topology in order to study concurrent computations - they have not yet been precisely related to the previous models, and the purpose of this paper is to fill this gap. In particular, we describe an adjunction between Petri nets and cubical sets which extends the previously known adjunction between Petri nets and asynchronous transition systems by Nielsen and Winskel

    Analysing Coloured Petri Nets by the Occurrence Graph Method

    Get PDF
    This paper provides an overview og the work done for the author's PhD thesis. The research area of Coloured Petri Nets is introduced, and the available analysis methods are presented. The occurrence graph method, which is the main subject of this thesis, is described in more detail. Summaries of the six papers which, together with this overview, comprise the thesis are given, and the contributions are discussed.A large portion of this overview is dedicated to a description of related work. The aim is twofold: First, to survey pertinent results within the research areas of -- in increasing generality -- Coloured Petri Nets, High-level Petri Nets, and formalisms for modelling and analysis of parallel and distributed systems. Second, to put the results obtained in this thesis in a wider perspective by comparing them with important related work

    Partial Order Reduction for Reachability Games

    Get PDF
    Partial order reductions have been successfully applied to model checking of concurrent systems and practical applications of the technique show nontrivial reduction in the size of the explored state space. We present a theory of partial order reduction based on stubborn sets in the game-theoretical setting of 2-player games with reachability/safety objectives. Our stubborn reduction allows us to prune the interleaving behaviour of both players in the game, and we formally prove its correctness on the class of games played on general labelled transition systems. We then instantiate the framework to the class of weighted Petri net games with inhibitor arcs and provide its efficient implementation in the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case studies and demonstrate its efficiency

    A recursive paradigm for aligning observed behavior of large structured process models

    Get PDF
    The alignment of observed and modeled behavior is a crucial problem in process mining, since it opens the door for conformance checking and enhancement of process models. The state of the art techniques for the computation of alignments rely on a full exploration of the combination of the model state space and the observed behavior (an event log), which hampers their applicability for large instances. This paper presents a fresh view to the alignment problem: the computation of alignments is casted as the resolution of Integer Linear Programming models, where the user can decide the granularity of the alignment steps. Moreover, a novel recursive strategy is used to split the problem into small pieces, exponentially reducing the complexity of the ILP models to be solved. The contributions of this paper represent a promising alternative to fight the inherent complexity of computing alignments for large instances.Peer ReviewedPostprint (author's final draft
    corecore