5,038 research outputs found

    Subcellular mapping of dendritic activity in optic flow processing neurons

    Get PDF
    Dendritic integration is a fundamental element of neuronal information processing. So far, few studies have provided a detailed picture of this process, describing the properties of local dendritic activity and its subcellular organization. Here, I used 2-photon calcium imaging in optic flow processing neurons of the blowfly Calliphora vicina to determine the preferred location and direction of local motion cues for small branchlets throughout the entire dendrite. I found a pronounced retinotopic mapping on both the subcellular and the cell population level. In addition, dendritic branchlets residing in different layers of the neuropil were tuned to distinct directions of motion. Within one layer, local preferred directions varied according to the deflections of the ommatidial lattice. Summing the local receptive fields of all dendritic branchlets reproduced the characteristic properties of these neurons’ axonal output receptive fields. These results corroborate the notion that the dendritic morphology of vertical system cells allows them to selectively collect local motion inputs with particular directional preferences from a spatially organized input repertoire, thus forming filters that match global patterns of optic flow. These data illustrate a highly structured circuit organization as an efficient way to hard-wire a complex sensory task

    Subcellular Mapping of Dendritic Activity in Optic Flow Processing Neurons

    No full text

    Freeform terahertz structures fabricated by multi-photon lithography and metal coating

    Get PDF
    Direct-write multi-photon laser lithography (MPL) combines highest resolution on the nanoscale with essentially unlimited 3D design freedom. Over the previous years, the groundbreaking potential of this technique has been demonstrated in various application fields, including micromechanics, material sciences, microfluidics, life sciences as well as photonics, where in-situ printed optical coupling elements offer new perspectives for package-level system integration. However, millimeter-wave (mmW) and terahertz (THz) devices could not yet leverage the unique strengths of MPL, even though the underlying devices and structures could also greatly benefit from 3D freeform microfabrication. One of the key challenges in this context is the fact that functional mmW and THz structures require materials with high electrical conductivity and low dielectric losses, which are not amenable to structuring by multi-photon polymerization. In this work, we introduce and experimentally demonstrate a novel approach that allows to leverage MPL for fabricating high-performance mmW and THz structures with hitherto unachieved functionalities. Our concept exploits in-situ printed polymer templates that are selectively coated through highly directive metal deposition techniques in combination with precisely aligned 3D-printed shadowing structures. The resulting metal-coated freeform structures offer high surface quality in combination with low dielectric losses and conductivities comparable to bulk material values, while lending themselves to fabrication on planar mmW/THz circuits. We experimentally show the viability of our concept by demonstrating a series of functional THz structures such as THz interconnects, probe tips, and suspended antennas. We believe that our approach offers disruptive potential in the field of mmW and THz technology and may unlock an entirely new realm of laser-based 3D manufacturing

    Exploring the determinants of community structure and functioning : evidence from plankton communities

    Get PDF
    Les travaux récents sur la relation entre la biodiversité et le fonctionnement des écosystèmes ont souligné certains des aspects les plus dynamiques du fonctionnement des écosystèmes, tout en reconnaissant que la diversité répond à la fois aux variations le long de gradients environnementaux et à la dispersion des espèces entre les communautés locales. Les définitions de la diversité ont été de plus en plus caractérisés en intégrant la notion de traits fonctionnels et ont reconnu la nature flexible de la distribution des traits dans une communauté. Les chapitres de cette thèse se concentrent sur des questions liées à la façon dont la distribution des traits de la communauté est définis, comment ils peuvent informer les écologistes sur les processus associés à l'assemblage de la communauté, comment la composition des communautés pourrait changer sous différentes ampleurs de dispersion, et comment la fonctionnalité pourrait interagir avec la disponibilité des éléments nutritifs pour influencer le fonctionnement global de la communauté. Chaque chapitre va présenter l'un de ces thèmes dans les communautés zoo-et phytoplanctonique, qui emploient des analyses des données déjà recueillies, études de terrain et des expériences contrôlées en mésocosme. Les objectifs de cette thèse spécifiques sont: (1) de comparer les différentes mesures de la diversité (taxonomique et fonctionnelle) dans leur capacité de rendre compte de la biomasse dans les communautés de diatomées benthiques et planctoniques, (2) d'identifier un seuil de dispersion, au-delà duquel différentes communautés de zooplancton pourrait commencer à homogénéiser la composition, (3) de mieux comprendre les communautés de zooplancton naturelles en focusant sur les modèles de distribution dans les traits fonctionnels pour examiner les signes de filtrage ou de de compétition dans l'habitat en tant que facteurs influençant la structure de la communauté, et (4) de vérifier si la diversité fonctionnelle et la disponibilité des nutriments interagissent dans la production phytoplanctonique. En général, les mesures fonctionnelles de la diversité n'ont pas été surutilisées pour les mesures taxonomiques afin de modéliser le fonctionnement des écosystèmes, ils ont souvent permis de mieux comprendre les mécanismes qui sous-tendent les relations de l'importance. En outre, les processus de dispersion et les interactions locales ont tous deux été jugés influents dans la structure des communautés de zooplancton. La dispersion expérimentale de plus de\ud 1% a été jugée suffisante pour ouvrir une homogénéisation de la composition, et, sur le terrain, les filtres reliés à l'habitat ont été jugés plus influents que la compétition dans la définition de la diversité fonctionnelle du zooplancton. Finalement, aucune preuve n'implique la diversité fonctionnelle alguale comme étant un moteur important de la production primaire, ce qui suggère une redondance fonctionnelle qui pourrait définir les communautés phytoplanctoniques à des niveaux modestes de la richesse des espèces. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Diversité fonctionnelle, Fonctionnement des écosystèmes, Zooplancton, Phytoplancton, Dispersion

    Learning, Moving, And Predicting With Global Motion Representations

    Get PDF
    In order to effectively respond to and influence the world they inhabit, animals and other intelligent agents must understand and predict the state of the world and its dynamics. An agent that can characterize how the world moves is better equipped to engage it. Current methods of motion computation rely on local representations of motion (such as optical flow) or simple, rigid global representations (such as camera motion). These methods are useful, but they are difficult to estimate reliably and limited in their applicability to real-world settings, where agents frequently must reason about complex, highly nonrigid motion over long time horizons. In this dissertation, I present methods developed with the goal of building more flexible and powerful notions of motion needed by agents facing the challenges of a dynamic, nonrigid world. This work is organized around a view of motion as a global phenomenon that is not adequately addressed by local or low-level descriptions, but that is best understood when analyzed at the level of whole images and scenes. I develop methods to: (i) robustly estimate camera motion from noisy optical flow estimates by exploiting the global, statistical relationship between the optical flow field and camera motion under projective geometry; (ii) learn representations of visual motion directly from unlabeled image sequences using learning rules derived from a formulation of image transformation in terms of its group properties; (iii) predict future frames of a video by learning a joint representation of the instantaneous state of the visual world and its motion, using a view of motion as transformations of world state. I situate this work in the broader context of ongoing computational and biological investigations into the problem of estimating motion for intelligent perception and action

    Neural models of learning and visual grouping in the presence of finite conduction velocities

    Get PDF
    The hypothesis of object binding-by-synchronization in the visual cortex has been supported by recent experiments in awake monkeys. They demonstrated coherence among gamma-activities (30–90 Hz) of local neural groups and its perceptual modulation according to the rules of figure-ground segregation. Interactions within and between these neural groups are based on axonal spike conduction with finite velocities. Physiological studies confirmed that the majority of transmission delays is comparable to the temporal scale defined by gamma-activity (11–33 ms). How do these finite velocities influence the development of synaptic connections within and between visual areas? What is the relationship between the range of gamma-coherence and the velocity of signal transmission? Are these large temporal delays compatible with recently discovered phenomenon of gamma-waves traveling across larger parts of the primary visual cortex? The refinement of connections in the immature visual cortex depends on temporal Hebbian learning to adjust synaptic efficacies between spiking neurons. The impact of constant, finite, axonal spike conduction velocities on this process was investigated using a set of topographic network models. Random spike trains with a confined temporal correlation width mimicked cortical activity before visual experience. After learning, the lateral connectivity within one network layer became spatially restricted, the width of the connection profile being directly proportional to the lateral conduction velocity. Furthermore, restricted feedforward divergence developed between neurons of two successive layers. The size of this connection profile matched the lateral connection profile of the lower layer neuron. The mechanism in this network model is suitable to explain the emergence of larger receptive fields at higher visual areas while preserving a retinotopic mapping. The influence of finite conduction velocities on the local generation of gamma-activities and their spatial synchronization was investigated in a model of a mature visual area. Sustained input and local inhibitory feedback was sufficient for the emergence of coherent gamma-activity that extended across few millimeters. Conduction velocities had a direct impact on the frequency of gamma-oscillations, but did neither affect gamma-power nor the spatial extent of gamma-coherence. Adding long-range horizontal connections between excitatory neurons, as found in layer 2/3 of the primary visual cortex, increased the spatial range of gamma-coherence. The range was maximal for zero transmission delays, and for all distances attenuated with finite, decreasing lateral conduction velocities. Below a velocity of 0.5 m/s, gamma-power and gamma-coherence were even smaller than without these connections at all, i.e., slow horizontal connections actively desynchronized neural populations. In conclusion, the enhancement of gamma-coherence by horizontal excitatory connections critically depends on fast conduction velocities. Coherent gamma-activity in the primary visual cortex and the accompanying models was found to only cover small regions of the visual field. This challenges the role of gamma-synchronization to solve the binding problem for larger object representations. Further analysis of the previous model revealed that the patches of coherent gamma-activity (1.8 mm half-height decline) were part of more globally occurring gamma-waves, which coupled over much larger distances (6.3 mm half-height decline). The model gamma-waves observed here are very similar to those found in the primary visual cortex of awake monkeys, indicating that local recurrent inhibition and restricted horizontal connections with finite axonal velocities are sufficient requirements for their emergence. In conclusion, since the model is in accordance with the connectivity and gamma-processes in the primary visual cortex, the results support the hypothesis that gamma-waves provide a generalized concept for object binding in the visual cortex
    • …
    corecore