3 research outputs found

    Research on High-performance and Scalable Data Access in Parallel Big Data Computing

    Get PDF
    To facilitate big data processing, many dedicated data-intensive storage systems such as Google File System(GFS), Hadoop Distributed File System(HDFS) and Quantcast File System(QFS) have been developed. Currently, the Hadoop Distributed File System(HDFS) [20] is the state-of-art and most popular open-source distributed file system for big data processing. It is widely deployed as the bedrock for many big data processing systems/frameworks, such as the script-based pig system, MPI-based parallel programs, graph processing systems and scala/java-based Spark frameworks. These systems/applications employ parallel processes/executors to speed up data processing within scale-out clusters. Job or task schedulers in parallel big data applications such as mpiBLAST and ParaView can maximize the usage of computing resources such as memory and CPU by tracking resource consumption/availability for task assignment. However, since these schedulers do not take the distributed I/O resources and global data distribution into consideration, the data requests from parallel processes/executors in big data processing will unfortunately be served in an imbalanced fashion on the distributed storage servers. These imbalanced access patterns among storage nodes are caused because a). unlike conventional parallel file system using striping policies to evenly distribute data among storage nodes, data-intensive file systems such as HDFS store each data unit, referred to as chunk or block file, with several copies based on a relative random policy, which can result in an uneven data distribution among storage nodes; b). based on the data retrieval policy in HDFS, the more data a storage node contains, the higher the probability that the storage node could be selected to serve the data. Therefore, on the nodes serving multiple chunk files, the data requests from different processes/executors will compete for shared resources such as hard disk head and network bandwidth. Because of this, the makespan of the entire program could be significantly prolonged and the overall I/O performance will degrade. The first part of my dissertation seeks to address aspects of these problems by creating an I/O middleware system and designing matching-based algorithms to optimize data access in parallel big data processing. To address the problem of remote data movement, we develop an I/O middleware system, called SLAM, which allows MPI-based analysis and visualization programs to benefit from locality read, i.e, each MPI process can access its required data from a local or nearby storage node. This can greatly improve the execution performance by reducing the amount of data movement over network. Furthermore, to address the problem of imbalanced data access, we propose a method called Opass, which models the data read requests that are issued by parallel applications to cluster nodes as a graph data structure where edges weights encode the demands of load capacity. We then employ matching-based algorithms to map processes to data to achieve data access in a balanced fashion. The final part of my dissertation focuses on optimizing sub-dataset analyses in parallel big data processing. Our proposed methods can benefit different analysis applications with various computational requirements and the experiments on different cluster testbeds show their applicability and scalability

    File system metadata virtualization

    Get PDF
    The advance of computing systems has brought new ways to use and access the stored data that push the architecture of traditional file systems to its limits, making them inadequate to handle the new needs. Current challenges affect both the performance of high-end computing systems and its usability from the applications perspective. On one side, high-performance computing equipment is rapidly developing into large-scale aggregations of computing elements in the form of clusters, grids or clouds. On the other side, there is a widening range of scientific and commercial applications that seek to exploit these new computing facilities. The requirements of such applications are also heterogeneous, leading to dissimilar patterns of use of the underlying file systems. Data centres have tried to compensate this situation by providing several file systems to fulfil distinct requirements. Typically, the different file systems are mounted on different branches of a directory tree, and the preferred use of each branch is publicised to users. A similar approach is being used in personal computing devices. Typically, in a personal computer, there is a visible and clear distinction between the portion of the file system name space dedicated to local storage, the part corresponding to remote file systems and, recently, the areas linked to cloud services as, for example, directories to keep data synchronized across devices, to be shared with other users, or to be remotely backed-up. In practice, this approach compromises the usability of the file systems and the possibility of exploiting all the potential benefits. We consider that this burden can be alleviated by determining applicable features on a per-file basis, and not associating them to the location in a static, rigid name space. Moreover, usability would be further increased by providing multiple dynamic name spaces that could be adapted to specific application needs. This thesis contributes to this goal by proposing a mechanism to decouple the user view of the storage from its underlying structure. The mechanism consists in the virtualization of file system metadata (including both the name space and the object attributes) and the interposition of a sensible layer to take decisions on where and how the files should be stored in order to benefit from the underlying file system features, without incurring on usability or performance penalties due to inadequate usage. This technique allows to present multiple, simultaneous virtual views of the name space and the file system object attributes that can be adapted to specific application needs without altering the underlying storage configuration. The first contribution of the thesis introduces the design of a metadata virtualization framework that makes possible the above-mentioned decoupling; the second contribution consists in a method to improve file system performance in large-scale systems by using such metadata virtualization framework; finally, the third contribution consists in a technique to improve the usability of cloud-based storage systems in personal computing devices.Postprint (published version

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest
    corecore