4,273 research outputs found

    A Coding Theoretic Study on MLL proof nets

    Full text link
    Coding theory is very useful for real world applications. A notable example is digital television. Basically, coding theory is to study a way of detecting and/or correcting data that may be true or false. Moreover coding theory is an area of mathematics, in which there is an interplay between many branches of mathematics, e.g., abstract algebra, combinatorics, discrete geometry, information theory, etc. In this paper we propose a novel approach for analyzing proof nets of Multiplicative Linear Logic (MLL) by coding theory. We define families of proof structures and introduce a metric space for each family. In each family, 1. an MLL proof net is a true code element; 2. a proof structure that is not an MLL proof net is a false (or corrupted) code element. The definition of our metrics reflects the duality of the multiplicative connectives elegantly. In this paper we show that in the framework one error-detecting is possible but one error-correcting not. Our proof of the impossibility of one error-correcting is interesting in the sense that a proof theoretical property is proved using a graph theoretical argument. In addition, we show that affine logic and MLL + MIX are not appropriate for this framework. That explains why MLL is better than such similar logics.Comment: minor modification

    On the Severi problem in arbitrary characteristic

    Get PDF
    We show that Severi varieties parametrizing irreducible reduced planar curves of given degree and geometric genus are either empty or irreducible in any characteristic. As a consequence, we generalize Zariski's theorem to positive characteristic and show that a general reduced planar curve of given geometric genus is nodal. As a byproduct, we obtain the first proof of the irreducibility of the moduli space of smooth projective curves of given genus in positive characteristic, that does not involve a reduction to the characteristic zero case.Comment: 34 pages, 9 figures. Comments are welcome

    F-theory on singular spaces

    Get PDF
    We propose a framework for treating F-theory directly, without resolving or deforming its singularities. This allows us to explore new sectors of gauge theories, including exotic bound states such as T-branes, in a global context. We use the mathematical framework known as Eisenbud's matrix factorizations for hypersurface singularities. We display the usefulness of this technique by way of examples, including affine singularities of both conifold and orbifold type, as well as a class of full-fledged compact elliptically fibered Calabi-Yau fourfolds.Comment: 35 pages, 4 figures, minor revision

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method

    Non-Malleable Codes for Small-Depth Circuits

    Get PDF
    We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e. AC0\mathsf{AC^0} tampering functions), our codes have codeword length n=k1+o(1)n = k^{1+o(1)} for a kk-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay and Li (STOC 2017), which had codeword length 2O(k)2^{O(\sqrt{k})}. Our construction remains efficient for circuit depths as large as Θ(log(n)/loglog(n))\Theta(\log(n)/\log\log(n)) (indeed, our codeword length remains nk1+ϵ)n\leq k^{1+\epsilon}), and extending our result beyond this would require separating P\mathsf{P} from NC1\mathsf{NC^1}. We obtain our codes via a new efficient non-malleable reduction from small-depth tampering to split-state tampering. A novel aspect of our work is the incorporation of techniques from unconditional derandomization into the framework of non-malleable reductions. In particular, a key ingredient in our analysis is a recent pseudorandom switching lemma of Trevisan and Xue (CCC 2013), a derandomization of the influential switching lemma from circuit complexity; the randomness-efficiency of this switching lemma translates into the rate-efficiency of our codes via our non-malleable reduction.Comment: 26 pages, 4 figure
    corecore