2,443 research outputs found

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Touch Position Detection in Electrical Tomography Tactile Sensors Through Quadratic Classifier

    Get PDF
    Traditional electrical tomography tactile sensors consider the usage of the system’s finite element model. This approach brings disadvantages that jeopardise their applicability aspect and wide use. To address this limitation, the main thrust of this work is to present a method for touch position identification for an electrical tomography flexible tactile sensor. This is done by using a supervised machine learning algorithm for performing classification, namely quadratic discriminant analysis. This approach provides accurate contact location identification, increasing the detection speed and the sensor versatility when compared to traditional electrical tomography approaches. Results obtained show classification accuracy rates of up to 91.6% on unseen test data and an average euclidean error ranging from 1 to 10 mm depending on the contact location over the sensor. The sensor is then applied in real case scenarios to show its efficiency. These outcomes are encouraging since they promote the future practical usage of flexible and low-cost sensors
    • …
    corecore