15 research outputs found

    Randomized Network Coding for UEP Video Delivery in Overlay Networks

    Get PDF
    This paper presents a receiver-driven video delivery algorithm that exploits a novel Randomized Network Coding (RNC) scheme for unequal error protection (UEP). The main idea of our approach is to account for the unequal importance of media packets in the network coding algorithm for efficient stream delivery in lossy overlay networks. Based on the requests from their neighbours, the network nodes properly combine packets and forward them to their children nodes. The network coding operations at every node are formulated as a log-concave optimization problem, which is solved with a greedy algorithm in only a few iterations. Our experimental results demonstrate that the proposed scheme permits to respect the priorities between the different packet classes. It further outperforms baseline network coding techniques for video streaming in overlay networks. Index Terms — Network coding, rate allocation, unequal error protection, overlay networks 1

    Scalable video dissemination with prioritized network coding

    Full text link

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Low Computational Complexity Network Coding For Mobile Networks

    Get PDF

    Network Coding For Star and Mesh Networks

    Get PDF
    This thesis introduces new network coding techniques to improve the file sharing and video streaming performance of wireless star and mesh networks. In this thesis we propose a new XOR based scheduling algorithm for network coding in cooperative local repair. The proposed algorithm commences in three phases. In the first phase, nodes exchange packets availability vectors. These vectors are functions of the probability of correct packet reception over the channel. This is followed by a short period of distributed scheduling where the nodes execute the processing algorithm which tries to minimize the total transmission time. In the third phase, nodes transmit the encoded packets as per the decision of the scheduling algorithm. Simulation results show improvement in system throughput and processing delay for the proposed algorithm. We also study the trade-offs between file sizes, processing delays, number of users and packet availability. In the sequel we display the favorable effects of file segmentation on the performance of the proposed scheduling algorithm. Furthermore, the upper bound on the performance and the analysis of the proposed scheduling algorithm are derived. Also, in this thesis, the effects of random network coding on code division multiple access/time division duplex (CDMA/TDD) platforms for wireless mesh networks are studied and evaluated. A multi-hop mesh network with single source and multiple receiving nodes is assumed. For reliable data transfer, a Selective Repeat ARQ protocol is used. Two scenarios are evaluated for their efficiency. In scenario 1, but not in scenario 2, random network coding is applied to CDMA/TDD wireless mesh networks. The delay and delay jitter for both scenarios are computed. The study also focuses on the effects of uncontrolled parameters such as the minimum number of neighbors and the network connectivity, and of controlled parameters such as Galois Field (GF) size, packet size, number of Walsh functions employed at each node and the Processing Gain. The analysis and simulation results show that applying random network coding to CDMA/TDD systems in wireless mesh networks could provide a noticeable improvement in overall efficiency. We also propose a cross layer approach for the Random Network coded-Code Division Multiple Access/Time Division Duplex (RNC-CDMA/TDD) wireless mesh networks. The proposed algorithm selects the number of assigned Walsh functions depending on the network topology. Two strategies of Walsh function assignments are proposed. In the first, nodes determine the number of their assigned Walsh functions depending on the neighbor with the maximum number of neighbors, which we call the worst case assignment. In the second, nodes determine the number of their assigned Walsh functions depending on the need for each transmission. Simulation results show the possible achievable improvement in the system performance, delay and delay jitter due to cross layer design

    Integrating a technology-enriched curriculum: ethno-case study

    Get PDF
    The purpose of this qualitative study was to provide an examination of beliefs, context factors, and practices of exemplary teachers that lead to a technology-enriched curriculum. Three middle school teachers participated. Using both direct and participant observation the Spradley model was followed with three rounds of observations: (1) descriptive, (2) focused, and (3) selective. Interviews were conducted with open-ended questions and documents were collected from the parish website. This research provides: (1) up-to-date information on what and how educational technology is used today; and (2) information which gives other educators an understanding of what beliefs and context factors influence teachers to integrate technology into their curriculum. Findings suggest that these middle school teachers believe technology is a tool that adds value to lessons and to students\u27 learning and motivation. Due to a personal interest in technology, these teachers are self-taught and apply for grants to acquire new hardware and software. They receive support for release time to continue with ongoing professional development, which has helped to change their teaching strategies from teacher-centered to student-centered. They are not afraid to take risk using trial and error, flexible planning, project-based lessons, varying roles, varying grouping, and providing multiple activities in their classroom practices. Students are allowed to make choices, be independent, and take responsibility for themselves and their work

    Network Coding for Cooperation in Wireless Networks

    Get PDF

    Structured Network Coding and Cooperative Local Peer-to-Peer Repair for MBMS Video Streaming

    No full text
    Abstract—By providing coding ability at intermediate nodes, network coding has been shown to improve throughput in wireless broadcast/multicast networks. Considering a scenario where wireless ad-hoc peers cooperatively relay packets to each other to recover packets lost during MBMS broadcast, we show that by first imposing coding structures globally and then selecting the appropriate types within the structures locally, network coding can be optimized for video streaming in a rate-distortion manner. Experimental results show that our proposed scheme can improve video quality noticeably, by up to 19.71dB over un-repaired video stream and by up to 8.34dB over video stream using traditional unstructured network coding. I

    Enabling technologies and cyber-physical systems for mission-critical scenarios

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e Comunicacións en Redes Móbiles . 5029P01[Abstract] Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: transportation, defense and public safety, and shipbuilding. Regarding the transport sector, this thesis provides an understanding of the progress of communications technologies used for railways since the implantation of Global System for Mobile communications-Railways (GSM-R). The aim of this work is to envision the potential contribution of Long Term Evolution (LTE) to provide additional features that GSM-R would never support. Furthermore, the ability of Industrial IoT for revolutionizing the railway industry and confront today's challenges is presented. Moreover, a detailed review of the most common flaws found in Radio Frequency IDentification (RFID) based IoT systems is presented, including the latest attacks described in the literature. As a result, a novel methodology for auditing security and reverse engineering RFID communications in transport applications is introduced. The second sector selected is driven by new operational needs and the challenges that arise from modern military deployments. The strategic advantages of 4G broadband technologies massively deployed in civil scenarios are examined. Furthermore, this thesis analyzes the great potential for applying IoT technologies to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where defense and public safety could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. The last part is devoted to the shipbuilding industry. After defining the novel concept of Shipyard 4.0, how a shipyard pipe workshop works and what are the requirements for building a smart pipe system are described in detail. Furthermore, the foundations for enabling an affordable CPS for Shipyards 4.0 are presented. The CPS proposed consists of a network of beacons that continuously collect information about the location of the pipes. Its design allows shipyards to obtain more information on the pipes and to make better use of it. Moreover, it is indicated how to build a positioning system from scratch in an environment as harsh in terms of communications as a shipyard, showing an example of its architecture and implementation.[Resumen] En la sociedad moderna, los sistemas de transporte fiables, la defensa, la seguridad pública y el control de la calidad en la Industria 4.0 son esenciales. En un escenario de misión crítica, el fracaso de una misión pone en peligro vidas humanas y en riesgo otros activos cuyo deterioro o pérdida perjudicaría significativamente a la sociedad o a los resultados de una empresa. Incluso pequeñas degradaciones en las comunicaciones que apoyan la misión podrían tener importantes y posiblemente terribles consecuencias. Por un lado, las organizaciones de misión crítica desean utilizar los sistemas y tecnologías de comunicación más modernos, disruptivos e innovadores y, sin embargo, deben cumplir requisitos estrictos que son muy diferentes a los relativos a escenarios no críticos. El objetivo principal de esta tesis es evaluar la viabilidad de aplicar tecnologías emergentes como Internet of Things (IoT), Cyber-Physical Systems (CPS) y comunicaciones de banda ancha 4G en escenarios de misión crítica en tres sectores clave de infraestructura crítica: transporte, defensa y seguridad pública, y construcción naval. Respecto al sector del transporte, esta tesis permite comprender el progreso de las tecnologías de comunicación en el ámbito ferroviario desde la implantación de Global System for Mobile communications-Railway (GSM-R). El objetivo de este trabajo es analizar la contribución potencial de Long Term Evolution (LTE) para proporcionar características adicionales que GSM-R nunca podría soportar. Además, se presenta la capacidad de la IoT industrial para revolucionar la industria ferroviaria y afrontar los retos actuales. Asimismo, se estudian con detalle las vulnerabilidades más comunes de los sistemas IoT basados en Radio Frequency IDentification (RFID), incluyendo los últimos ataques descritos en la literatura. Como resultado, se presenta una metodología innovadora para realizar auditorías de seguridad e ingeniería inversa de las comunicaciones RFID en aplicaciones de transporte. El segundo sector elegido viene impulsado por las nuevas necesidades operacionales y los desafíos que surgen de los despliegues militares modernos. Para afrontarlos, se analizan las ventajas estratégicas de las tecnologías de banda ancha 4G masivamente desplegadas en escenarios civiles. Asimismo, esta tesis analiza el gran potencial de aplicación de las tecnologías IoT para revolucionar la guerra moderna y proporcionar beneficios similares a los alcanzados por la industria. Se identifican escenarios en los que la defensa y la seguridad pública podrían aprovechar mejor las capacidades comerciales de IoT para ofrecer una mayor capacidad de supervivencia al combatiente o a los servicios de emergencias, a la vez que reduce los costes y aumenta la eficiencia y efectividad de las operaciones. La última parte se dedica a la industria de construcción naval. Después de definir el novedoso concepto de Astillero 4.0, se describe en detalle cómo funciona el taller de tubería de astillero y cuáles son los requisitos para construir un sistema de tuberías inteligentes. Además, se presentan los fundamentos para posibilitar un CPS asequible para Astilleros 4.0. El CPS propuesto consiste en una red de balizas que continuamente recogen información sobre la ubicación de las tuberías. Su diseño permite a los astilleros obtener más información sobre las tuberías y hacer un mejor uso de las mismas. Asimismo, se indica cómo construir un sistema de posicionamiento desde cero en un entorno tan hostil en términos de comunicaciones, mostrando un ejemplo de su arquitectura e implementación
    corecore