3,189 research outputs found

    Towards an Architecture for Semiautonomous Robot Telecontrol Systems.

    Get PDF
    The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself

    DESIGN KNOWLEDGE FOR VIRTUAL LEARNING COMPANIONS

    Get PDF
    Conversational agents (CAs) are getting smarter thanks to advances in artificial intelligence, which opens the potential to use them in educational contexts to support (working) students. In addition, CAs are turning toward relationship-oriented virtual companions (e.g., Replika). Synthesizing these trends, we derive the virtual learning companion (VLC), which aims to support working students in their time management and motivation. In addition, we propose design knowledge, which was developed as part of a design science research project. We derive nine design principles, 28 meta-requirements, and 33 categories of design features based on interviews with students and experts, the results of an interdisciplinary workshop, and a user test. We aim to demonstrate how to design VLCs to unfold their potential for individual student support

    Social Machinery and Intelligence

    Get PDF
    Social machines are systems formed by technical and human elements interacting in a structured manner. The use of digital platforms as mediators allows large numbers of human participants to join such mechanisms, creating systems where interconnected digital and human components operate as a single machine capable of highly sophisticated behaviour. Under certain conditions, such systems can be described as autonomous and goal-driven agents. Many examples of modern Artificial Intelligence (AI) can be regarded as instances of this class of mechanisms. We argue that this type of autonomous social machines has provided a new paradigm for the design of intelligent systems marking a new phase in the field of AI. The consequences of this observation range from methodological, philosophical to ethical. On the one side, it emphasises the role of Human-Computer Interaction in the design of intelligent systems, while on the other side it draws attention to both the risks for a human being and those for a society relying on mechanisms that are not necessarily controllable. The difficulty by companies in regulating the spread of misinformation, as well as those by authorities to protect task-workers managed by a software infrastructure, could be just some of the effects of this technological paradigm

    Children\u27s Mathematical Engagement Based on Their Awareness of Different Coding Toys\u27 Design Features

    Get PDF
    Tangible coding toys have been promulgated as useful learning tools for young children to learn computer science and mathematics concepts and skills. Although research shows coding toys can support mathematics for early childhood aged children, little is known about the specific design features of coding toys that afford mathematical thinking concepts and skills to young children. The purpose of this study was to examine kindergarten-aged children’s awareness of the design features in coding toys and to understand how those design features afford children’s engagement with mathematics. The dataset used for this study was collected as part of design-based research NSF project (award #DRL-1842116). I used a multi-phased qualitative analysis with a total of 42 hours of video data of 106, 5- to 6-year-old children engaging in coding toy tasks with four coding to answer the three research questions which were focused on perception of design features, mathematical engagement, and how different design features could afford mathematics. Results indicated that (a) children used and perceived the grid square and command arrow design features frequently, while other design features were used moderately or rarely; (b) children engaged in a variety of mathematical concepts and skills in five main categories of mathematical topics: spatial reasoning, geometry, comparison, measurement, and number; and (c) the relationship between design features affording mathematics varied depending on the coding toy. This research highlights the importance of specific design features to afford certain mathematical concepts and skills. These findings have important implications as early childhood educators explore ways to implement coding toys to support mathematics and computer science concepts, researchers conduct studies to better understanding how coding toys support mathematics and computer science learning, and commercial companies design new coding toys to fill the needs of educators and parents

    Robo-ethics design approach for cultural heritage: Case study - Robotics for museum purpose

    Get PDF
    The thesis shows the study behind the design process and the realization of the robotic solution for museum purposes called Virgil. The research started with the literature review on museums management and the critic analysis of signi cant digital experiences in the museum eld. Then, it continues analyzing the museum and its relation with the territory and the cultural heritage. From this preliminary analysis stage, signi cant issue related to museum management analysis comes out: nowadays many museum areas are not accessible to visitors because of issues related to security or architectural barriers. Make explorable these areas is one of the important topics in the cultural debate related to the visiting experience. This rst stage gave the knowledge to develop the outlines which brought to the realization of an ef cient service design then realized following robot ethical design values. One of the pillars of the robot ethical design is the necessity to involve all the stakeholders in the early project phases, for this reason, the second stage of the research was the study of the empathic relations between museum and visitors. In this phase, facilitator factors of this relation are de ned and transformed into guidelines for the product system performances. To perform this stage, it has been necessary create a relation between all the stakeholders of the project, which are: Politecnico di Torino, Tim (Telecom Italia Mobile) JOL CRAB research laboratory and Terre dei Savoia which is the association in charge of the Racconiggi’s Castle, the context scenario of the research. The third stage of the research, provided the realization of a prototype of the robot, in this stage telepresence robot piloted the Museum Guide it is used to show, in real time, the inaccessible areas of the museum enriched with multimedia contents. This stage concludes with the nal test user, from the test session feedback analysis, many of people want to drive themselves the robot. To give an answer to user feedback an interactive game has been developed. The game is based both on the robot ability to be driven by the visitors and also on the capacity of the robot to be used as a platform for the digital telling. To be effective, the whole experience it has been designed and tested with the support of high school students, which are one of the categories less interested in the traditional museum visit. This experience wants to demonstrate that the conscious and ethical use of the robotic device is effectively competitive, in term of performances, with the other solutions of digital visit: because it allows a more interactive digital experience in addition to the satisfaction of the physical visit at the museum

    Perceptive qualities in systems of interactive products

    Get PDF
    • …
    corecore