98,355 research outputs found

    Image interpretation above and below the object level

    Get PDF
    Computational models of vision have advanced in recent years at a rapid rate, rivaling in some areas human- level performance. Much of the progress to date has focused on analyzing the visual scene at the object level – the recognition and localization of objects in the scene. Human understanding of images reaches a richer and deeper image understanding both ‘below’ the object level, such as identifying and localizing object parts and sub-parts, as well as ‘above’ the object levels, such as identifying object relations, and agents with their actions and interactions. In both cases, understanding depends on recovering meaningful structures in the image, their components, properties, and inter-relations, a process referred here as ‘image interpretation’. In this paper we describe recent directions, based on human and computer vision studies, towards human-like image interpretation, beyond the reach of current schemes, both below the object level, as well as some aspects of image interpretation at the level of meaningful configurations beyond the recognition of individual objects, in particular, interactions between two people in close contact. In both cases the recognition process depends on the detailed interpretation of so-called 'minimal images', and at both levels recognition depends on combining ‘bottom-up’ processing, proceeding from low to higher levels of a processing hierarchy, together with ‘top-down’ processing, proceeding from high to lower levels stages of visual analysis.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    Full interpretation of minimal images

    Get PDF
    The goal in this work is to model the process of ‘full interpretation’ of object images, which is the ability to identify and localize all semantic features and parts that are recognized by human observers. The task is approached by dividing the interpretation of the complete object to the interpretation of multiple reduced but interpretable local regions. In such reduced regions, interpretation is simpler, since the number of semantic components is small, and the variability of possible configurations is low. We model the interpretation process by identifying primitive components and relations that play a useful role in local interpretation by humans. To identify useful components and relations used in the interpretation process, we consider the interpretation of ‘minimal configurations’: these are reduced local regions, which are minimal in the sense that further reduction renders them unrecognizable and uninterpretable. We show that such minimal interpretable images have useful properties, which we use to identify informative features and relations used for full interpretation. We describe our interpretation model, and show results of detailed interpretations of minimal configurations, produced automatically by the model. Finally, we discuss implications of full interpretation to difficult visual tasks, such as recognizing human activities or interactions, which are beyond the scope of current models of visual recognition.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    Substructure Discovery Using Minimum Description Length and Background Knowledge

    Full text link
    The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our SUBDUE substructure discovery system based on the minimum description length principle. The SUBDUE system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical description of the structural regularities in the data. SUBDUE uses a computationally-bounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by SUBDUE to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate SUBDUE's ability to find substructures capable of compressing the original data and to discover structural concepts important to the domain. Description of Online Appendix: This is a compressed tar file containing the SUBDUE discovery system, written in C. The program accepts as input databases represented in graph form, and will output discovered substructures with their corresponding value.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl
    • …
    corecore