28,067 research outputs found

    Cutting the Error by Half: Investigation of Very Deep CNN and Advanced Training Strategies for Document Image Classification

    Full text link
    We present an exhaustive investigation of recent Deep Learning architectures, algorithms, and strategies for the task of document image classification to finally reduce the error by more than half. Existing approaches, such as the DeepDocClassifier, apply standard Convolutional Network architectures with transfer learning from the object recognition domain. The contribution of the paper is threefold: First, it investigates recently introduced very deep neural network architectures (GoogLeNet, VGG, ResNet) using transfer learning (from real images). Second, it proposes transfer learning from a huge set of document images, i.e. 400,000 documents. Third, it analyzes the impact of the amount of training data (document images) and other parameters to the classification abilities. We use two datasets, the Tobacco-3482 and the large-scale RVL-CDIP dataset. We achieve an accuracy of 91.13% for the Tobacco-3482 dataset while earlier approaches reach only 77.6%. Thus, a relative error reduction of more than 60% is achieved. For the large dataset RVL-CDIP, an accuracy of 90.97% is achieved, corresponding to a relative error reduction of 11.5%

    Structure Preserving Large Imagery Reconstruction

    Get PDF
    With the explosive growth of web-based cameras and mobile devices, billions of photographs are uploaded to the internet. We can trivially collect a huge number of photo streams for various goals, such as image clustering, 3D scene reconstruction, and other big data applications. However, such tasks are not easy due to the fact the retrieved photos can have large variations in their view perspectives, resolutions, lighting, noises, and distortions. Fur-thermore, with the occlusion of unexpected objects like people, vehicles, it is even more challenging to find feature correspondences and reconstruct re-alistic scenes. In this paper, we propose a structure-based image completion algorithm for object removal that produces visually plausible content with consistent structure and scene texture. We use an edge matching technique to infer the potential structure of the unknown region. Driven by the estimated structure, texture synthesis is performed automatically along the estimated curves. We evaluate the proposed method on different types of images: from highly structured indoor environment to natural scenes. Our experimental results demonstrate satisfactory performance that can be potentially used for subsequent big data processing, such as image localization, object retrieval, and scene reconstruction. Our experiments show that this approach achieves favorable results that outperform existing state-of-the-art techniques
    corecore